SUMMARIZED SOURCES OF ERROR.
The following principal sources of error must be especially guarded against:
1. Drying out of sample during weighing.
2. Excess of subacetate of lead solution in clarification.
3. Incomplete mixing of solution after making up to mark.
4. Imperfect clarification or filtration.
5. Concentration of solution by evaporation during filtration.
6. Undue compression of the cover glass.
7. Alteration of the temperature of room, position of instrument, or intensity of light while the observation or control observation is being performed.
8. Performances of polarization with a cloudy, dim, or not completely round or sharply defined field.
In closing this report the members of this commission hereby signify their intention to promote uniformity and accuracy by adopting and using the standards and general plan of procedure recommended in this report in the polarimetric determinations over which, in their respective branches of government work, they have control.
Report to the United States Internal Revenue Department by C.A. Crampton, Chemist of U.S. Internal Revenue; H.W. Wiley, Chief Chemist of U.S. Department of Agriculture; and O.H. Tittmann, Assistant in Charge of Weights and Measures, U.S. Coast and Geodetic Survey.
Prepared as follows: Shake up powdered commercial alum with water at ordinary temperature until a saturated solution is obtained. Set aside a little of the solution, and to the residue add ammonia, little by little, stirring between additions, until the mixture is alkaline to litmus paper. Then drop in additions of the portion left aside, until the mixture is just acid to litmus paper. By this procedure a cream of aluminum hydroxide is obtained suspended in a solution of ammonium sulphate, the presence of which is not at all detrimental for sugar work when added after subacetate of lead, the ammonium sulphate precipitating whatever excess of lead may be present.
THE GRAND FALLS OF LABRADOR.
Hamilton Inlet, or Ionektoke, as the Esquimaus call it, is the outlet to the largest river on the Labrador Peninsula, and of great importance to commerce, Rigolet, the headquarters of the Hudson Bay Company in this region, being situated on its shores. This inlet is the great waterway to Central Labrador, extending into the interior for nearly 200 miles.
This immense basin is undoubtedly of glacial origin, evidences of ice erosion being plainly seen. It is divided into two general basins, connected by the "narrows," a small strait, through which the water rushes with frightful rapidity at each tide. Into the head of the inlet flows the Hamilton, or Grand River, an exploration of which, though attended with the greatest danger and privation, has enticed many men to these barren shores. Perhaps the most successful expedition thus far was that of Mr. Holme, an Englishman, who, in the summer of 1888, went as far as Lake Waminikapon, where, by failure of his provisions, he was obliged to turn back, leaving the main object of the trip, the discovery of the Grand Falls, wholly unaccomplished.
It has been left for Bowdoin College to accomplish the work left undone by Mr. Holme, to do honor to herself and her country by not only discovering, measuring, and photographing the falls, but making known the general features of the inland plateau, the geological structure of the continent, and the course of the river.
On Sunday, July 26, a party of the Bowdoin expedition, consisting of Messrs. Cary, Cole, Young, and Smith, equipped with two Rushton boats and a complement of provisions and instruments, left the schooner at the head of the inlet for a five weeks' trip into the interior, the ultimate object being the discovery of the Grand Falls. The mouth of the river, which is about one mile wide, is blockaded by immense sand bars, which have been laid down gradually by the erosive power of the river. These bars extend far out into Goose Bay, at the head of Lake Melville, and it is impossible to approach the shores except in a small boat. Twenty-five miles up the river are the first falls, a descent of the water of twenty-five feet, forming a beautiful sight. Here a cache of provisions was made, large enough to carry the party back to the appointed meeting place at Northwest River. The carry around the first falls is about one and a half miles in length, and very difficult on account of the steep sides of the river.
From the first falls to Gull Island Lake, forty miles above, the river is alternately quick and dead water. Part of it is very heavy rapids, over which it was necessary to track, and in some places to double the crews. Each boat had a tow line of fifty feet, and in tracking the end was taken ashore by one of the crew of two, while the boat was kept off the bank by the other man with an oar. At the Horseshoe Rapids, ten miles above Gull Island Lake, an accident happened which threatened to put a stop to further progress of the expedition. While tracking around a steep point in crossing these rapids the boat which Messrs. Cary and Smith were tracking was overturned, dumping barometer, shotgun, and ax into the river, together with nearly one-half the total amount of provisions. In the swift water of the rapids all these things were irrevocably lost, a very serious loss at this stage in the expedition. On this day so great was the force of the water that only one mile was made, and that only with the greatest difficulty.
Just above the mouth of the Nimpa River, which enters the Grand River twenty-five miles above Gull Island Lake, a second cache of provisions was made, holding enough to carry the party to their first cache at the first falls. One of the boats was now found to be leaking badly, and a stop was made to pitch the cracks and repair her, making necessary the loss of a few hours. From Nimpa River to the Mouni Rapids, at the entrance to Lake Waminikapon, the water was found to be fairly smooth, and good progress was made. The change in the scenery, too, is noticeable, becoming more magnificent and grand. The mountains, which are bolder and more barren, approach much nearer to each other on each side of the river, and at the base of these grim sentinels the river flows silvery and silently. The Mouni Rapids, through which the water passes from Lake Waminikapon, presented the next obstacle to further progress, but the swift water here was soon passed, and well repaid the traveler with the sight here presented almost unexpectedly to his view.
The lake was entered about 4 o'clock in the afternoon, and, as the narrow entrance was passed, the sun poured its full rich light on rocky mountains stretching as far away as the eye could reach, on each side of the lake, and terminating in rocky cliffs from 600 to 800 feet in perpendicular height, which formed the shores or confines of the lake. Across Lake Waminikapon, which is, more properly speaking, not a lake at all, but rather a widening of the river bed, the progress was very good, the water having no motion to retard the boats, and forty miles were made during the day.
Here a misfortune, which had been threatening for several days, came upon the party. Mr. Young's arm was so swollen, from the shoulder to finger tips, that he could scarcely move it, the pain being excessive. It had been brought on doubtless by cold and exposure. Seeing that he could be of no further use to the party, it was decided to divide forces, Mr. Smith returning with the sick man to Rigolet for medical assistance. The separation took place August 8, when the party had been on the river eleven days. The party were very sorry to return at this point, since from the best information which they could get in regard to the distance, the falls were but fifty miles above them. Under the circumstances, however, there was no help for it. So Smith and Young, bidding their friends good fortune, started on their return trip. The mouth of the river was reached in three days, a little less than one-third the time consumed in going up, and that, too, with only one man to handle the boat.
On the way down the river another party, composed of Messrs. Bryant and Kenaston of Philadelphia, was met, who were on the same business as the Bowdoin party, the discovery of the falls. Mr. Bryant handed to Mr. Young a twenty-five pound can of flour, which, he said, he had found in the whirlpool below the first falls. It had been in the boat which was overturned in the Horseshoe Rapids, and had made the journey to the first falls, a distance of over fifty miles, without denting or injuring the can in any way. It was a great relief to the Bryant party to learn the cause of the mishap, as they had feared a more serious calamity.
After the departure of the other two, Messrs. Cary and Cole encountered much rapid water, so that their progress was necessarily slow. On the third day, when they had proceeded sixty-five miles above Lake Waminikapon, and had seen no indications of any falls, the rapidity of the current forced them to leave the river and make any further progress on foot. The boat was cached at this point, together with all that was left of provisions and instruments except the compass and food for six days. They left just enough provisions to carry them to their last cache at Ninipi River, and hoped, by careful use of the remainder, to find the object of their search. If they had not enough provisions, then they must turn back, leaving reports of falls as destitute of confirmation as ever.
The land bordering the river at this point was heavily wooded, and in places where the river shore could not be followed on account of the cliffs, their progress was necessarily slow. Finding an elevation of land at no great distance from them, they ascended it for a general survey of the country. Far away in the distance could be seen the current of the Grand River flowing sluggishly but majestically on its course to the sea. Lakes on all sides were visible, most of them probably of glacial origin. Descending from this mountain, which the explorers christened Mount Bowdoin, a course was laid on the river bank, where camp was made that night. Being now somewhat weak from hard labor and insufficient food, their progress was slow through the thick wood, but on the next night camp was made on the edge of the plateau or table land of Labrador.
After proceeding a short distance on the next day, Aug. 13, a loud roar was heard in the distance, and a course was laid for the river at the nearest point. The river at this point, about one mile above the falls, was 500 yards wide, narrowing to fifty yards a short distance below, where great clouds of spray floating in the air warned the weary travelers that their object had been attained. Quickly they proceeded to the scene, and a magnificent sight burst upon their view.
Grand Falls, though not approaching the incredible height attributed to it by legendary accounts of the Indians, is a grand fall of water. Its total descent is accomplished in a series of falls aggregating nearly 500 feet. The greatest perpendicular descent is not over 200 feet. The half dozen falls between this grand descent and the bed of the river on the plateau vary from ten to twenty-five feet, adding to the majesty and grandeur of the scene. It was with great difficulty that the bottom of the falls was reached and a photograph of the scene taken.
After leaving the plateau and plunging over the falls, the waters enter an immense cañon or gorge, nearly 40 miles long and 300 yards wide, the perpendicular sides of which rise to a height of from 300 to 500 feet. The sides of this cañon show it to be hollowed out of solid Archæan rock. Through this cañon the water rushes with terrific rapidity, making passage by boat wholly impossible. Many erroneous stories have been told in regard to the height of these falls, all of them greatly exaggerating the descent of the water. The Indians of this locality of the tribe of the Nascopee or the race of Crees have long believed the falls to be haunted by an evil spirit, who punished with death any one who might dare to look upon them. The height of land or plateau which constitutes the interior of the Labrador peninsula is from 2,000 to 2,500 feet above the sea level, fairly heavily wooded with spruce, fir, hackmatack, and birch, and not at all the desolate waste it has been pictured by many writers. The barrenness of Labrador is confined to the coast, and one cannot enter the interior in any direction without being struck by the latent possibilities of the peninsula were it not for the abundance of flies and mosquitoes. Their greed is insatiable, and at times the two men were weakened from the loss of blood occasioned by these insects.
The object of the expedition being attained, the return trip was begun, and the sight of the cached boat and provisions eagerly watched for. On Aug. 15 the camp was sighted, but to their horror they saw smoke issuing from the spot. It at once flashed upon their minds what had taken place, and when they arrived they found that their fears had been all too truly realized. Charred remains of the boat, a burned octant, and a few unexploded cartridges were all that remained of the meager outfit upon which they depended to take them to the mouth of the river, a distance of over 250 miles. The camp fire, not having been completely extinguished, had burned the boat and destroyed all their provisions.
It was truly a hard outlook for them, but no time must be lost if provisions were to be obtained. Hastily a raft was constructed, the logs being bound together with spruce roots. In this way, by alternately walking and rafting, the mouth of the river was reached Aug. 29. On the way down the river five rafts had been made and abandoned. The only weapon was a small pocket revolver, and with the products of this weapon, mostly red squirrels and a few fish, they lived until they reached the different caches. Many a meal was made of one red squirrel divided between them, and upon such food they were compelled to make the best time possible. On the way up the river the shoes of one of the party had given wholly out, and he was obliged to make a rude pair of slippers from the back of a leather pack. With torn clothes and hungry bodies they presented a hard sight indeed when they joined their friends at Rigolet on the 1st of September. The party composed of Messrs. Bryant and Kenaston was passed by Cary and Cole while on the way down, but was not seen. Probably this occurred on Lake Waminikapon, the width of the lake preventing one party from seeing the other. It seemed a waste of time and energy that two expeditions in the same summer should be sent upon the same object, but neither party knew of the intention of the other until it was too late to turn back.
Grand River has long been a highway for the dependents of the Hudson Bay Company. The company formerly had a post on Lake Waminikapon, and another, called Height of Land, on the plateau. Provisions were carried to these posts, and furs brought from them by way of Grand River, the parties proceeding as far as the lake, and then, leaving Grand River some distance below the cañon, no longer being able to follow it on account of the swiftness of the water, they carried their canoes across the land to a chain of lakes connecting with the post. This station has been given up many years, and the river is used now chiefly be Indians and hunters in the winter.
It has long been known that Hamilton Inlet was of glacial origin, the immense basin hollowed out by this erosive agent being 150 miles in length. How much further this immense valley extended has never been known. Mr. Cary says that the same basin which forms Hamilton Inlet and enters Lake Melville, the two being connected by twelve miles of narrows, extends up the Grand River Valley as far as Gull Island Lake, the whole forming one grand glacial record. From Lake Melville to Gull Island the bed was being gradually filled in by the deposits of the river, but the contour of the basin is the same here as below. The bed of the country here is Archæan rock, and many beautiful specimens of labradorite dot the shores. In the distance the grim peaks of the Mealy Mountains stand out in bold relief against the sky.
The country about this interior basin is heavily wooded, and spars of 75 feet can be obtained in generous numbers. Were it not for the native inhabitants, mosquitoes, and flies, the interior would present conditions charming enough to tempt any lover of nature. It is the abundance of these invincible foes which make interior life a burden and almost an impossibility. To these inhabitants alone Grand Falls has ceased to chant its melodious tune. Hereafter its melodious ripple will be heard by Bowdoin College, which, in the name of its explorers, Cary and Cole, claims the honor of its discovery.—New York Times.
ANTS.
By RUTH WARD KAHN.
Astronomy has made us all familiar with the conception of the world over our heads. We no longer speculate with Epicurus and Anaxagoras whether the sun may be as large as a quoit, or even as large as Peloponnesus. We are satisfied that the greater and the lesser lights are worlds, some of them greatly exceeding our own in magnitude.
In a little poem of Dante Rossetti's, he describes a mood of violent grief in which, sitting with his head bowed between his knees, he unconsciously eyes the wood spurge growing at his feet, till from those terrible moments he carries away the one trivial fact cut into his brain for all time, that "the wood spurge has a cup of three." In some such mood of troubled thought, flung perhaps full length on the turf, have we not as unconsciously and intently watched a little ant, trudging across our prostrate form, intent upon its glorious polity: a creature to which we, with our great spiritual world of thought and emotion and will, have no existence except as a sudden and inconvenient upheaval of parti-colored earth to be scaled, of unknown geological formation, but wholly worthless as having no bearing upon the one great end of their life—the care of larvæ.
If we hold with Mr. Wallace that the chief difference between man and the lower animals is that of kind and not of degree—that man is possessed of an intelligent will that appoints its own ends, of a conscience that imposes upon him a "categorical imperative," of spiritual faculties that apprehend and worship the invisible—yet we must admit that his lower animal nature, which forms, as it, were, the platform of the spiritual, is built up of lower organisms.
If we hold with Professor Allman that thought, will, and conscience, though only manifesting themselves through the medium of cerebral protoplasm, are not its properties any more than the invisible earth elements which lie beyond the violet are the property of the medium which, by altering their refrangibility, makes them its own—then the study of the exact nature and properties of the transmitting medium is equally necessary. Indeed, the whole position can only be finally established of defining experimentally the necessary limitation of the medium, and proving the inefficiency of the lower data to account with the higher.
It is these considerations of the wider issues that give such a peculiar interest to the patient observations which have recently been brought to bear upon the habits of the social insects, especially of ants, which, living in communities, present so many of the conditions of human life, and the development of the "tribal self" from these conditions, to which Professor Clifford attributed the genesis of moral sense.
In order to pass in review these interesting observations and bring out their significance, I must go over ground which is doubtless familiar to most of my readers.
The winged ants, which often excite surprise, are simply the virgin queens and the males. They are entirely dependent upon the workers, and are reared in the same nest. September is the month usually selected as the marriage season, and in the early twilight of a warm day the air will be dark with the winged lovers. After the wedding trip the female tears off her wings—partly by pulling, but mostly by contortions of her body—for her life under ground would render wings not only unnecessary, but cumbersome; while the male is not exposed to the danger of being eaten by his cannibal spouse, as among spiders, nor to be set upon and assassinated by infuriated spinsters, as among bees, but drags out a precarious existence for a few days, and then either dies or is devoured by insectivorous insects. There is reason to believe that some females are fertilized before leaving the nest. I have observed flights of the common Formica rufa, in which the females flew away solitary and to great distances before they descended. In such cases it is certain that they were fertilized before their flight.
When a fertilized queen starts a colony it proceeds much in this way: When a shaft has been sunk deep enough to insure safety, or a sheltered position secured underneath the trunk of a tree or a stone, the queen in due time deposits her first eggs, which are carefully reared and nourished. The first brood consists wholly of workers, and numbers between twenty-five and forty in some species, but is smaller in others. The mother ant seeks food for herself and her young till the initial brood are matured, when they take up the burden of life, supply the rapidly increasing family with food, as well as the mother ant, enlarge the quarters, share in the necessary duties, and, in short, become the real workers of the nest before they are scarcely out of the shell. The mother ant is seldom allowed to peer beyond her dark quarters, and then only in company with her body guard. She is fed and cared for by the workers, and she in turn assists them in the rearing of the young, and has even been known to give her strength for the extension of the formicary grounds. Several queens often exist in one nest, and I have seen workers drag newly fertilized queens into a formicary to enlarge their resources. As needs be, the quantity of eggs laid is very great, for the loss of life in the ranks of the workers is very large; few survive the season of their hatching, although queens have been known to live eight years. (Lubbock.)
The ant life has four well marked periods: First, the egg; second, the grub or larva; third, the chrysalis or pupa; fourth, the imago, or perfect insect. The eggs are small, ovate, yellowish white objects, which hatch in about fifteen to thirty days. The larvæ are small legless grubs, quite large at the apex of the abdomen and tapering toward the head. Both eggs and pupa are incessantly watched and tended, licked and fed, and carried to a place of safety in time of danger. The larvæ are ingeniously sorted as regards age and size, and are never mixed. The larvæ period generally extends through a month, although often much longer, and in most species when the larvæ pass into pupæ they spin a cocoon of white or straw color, looking much like a shining pebble. Other larvæ do not spin a cocoon, but spend the pupal state naked. When they mature they are carefully assisted from their shells by the workers, which also assist in unfolding and smoothing out the legs. The whole life of the formicary centers upon the young, which proves they have reached a degree of civilization unknown even in some forms of higher life.
It is curious that, notwithstanding the labor of so many excellent observers, and though ants swarm in every field and wood, we should find so much difficulty in the history of these insects, and that so much obscurity should rest upon some of their habits. Forel and Ebrard, after repeated observations, maintain that in no single instance has an isolated female been known to bring her young to maturity. This is in direct contradiction to Lubbock's theory, who repeatedly tried introducing a new fertile queen into another nest of Lasius flavus, and always with the result that the workers became very excited and killed her, even though in one case the nest was without a queen. Of the other kinds, he isolated two pairs of Myrmica ruginodis, and, though the males died, the queens lived and brought their offspring to perfection; and nearly a year after their captivity, Sir John Lubbock watched the first young workers carrying the larvæ about, thereby proving the accuracy of Huber's statement, with some species at least. In spite of this convincing testimony, Lepeletier St. Fargeau is of the opinion that the nests originate with a solitary queen, as was first given.
The ants indigenous to Leadville, besides feeding on small flies, insects, and caterpillars—the carcasses of which they may be seen dragging to their nests—show the greatest avidity for sweet liquids. They are capable of absorbing large quantities, which they disgorge into the mouths of their companions. In winter time, when the ants are nearly torpid and do not require much nourishment, two or three ants told off as foragers are sufficient to provide for the whole nest. We all know how ants keep their herds in the shape of aphides, or ant cows, which supply them with the sweet liquid they exude. I have often observed an ant gently stroking the back of an aphide with its antennæ to coax it to give down its sweet fluid, much in the same way as a dairy maid would induce a cow to give down its milk by a gentle manipulation of its udders. Some species, principally the masons and miners, remove their aphides to plants in the immediate vicinity of their nest, or even introduce them into the ant home. In the interior of most nests is also found the small blind beetle (Claviger) glistening, and of a uniform red, its mouth of so singular a conformation that it is incapable of feeding itself. The ants carefully feed these poor dependent creatures, and in turn lick the sweet liquid which they secrete and exude. These little Coleoptera are only found in the nests of some species; when introduced into the nests of others they excite great bewilderment, and, after having been carefully turned over and examined, are killed in a short time as a useless commodity. Another active species of Coleoptera, of the family Staphylini, is also found in ant nests. I have discovered one in the nest of Formica rufa in the Jewish cemetery in Leadville. Furnished with wings, it does not remain in the nest, but is forced to return thither by the strange incapacity to feed itself. Like the Claviger, it repays its kind nurses by the sweet liquid it exudes, and which is retained by a tuft of hair on either side of the abdomen beneath the wings, which the creature lifts in order that the ant may get at its honeyed recompense. Such mutual services between creatures in no way allied is a most curious fact in the animal world.—Popular Science News.
A GEM-BEARING GRANITE VEIN IN WESTERN CONNECTICUT.
By L.P. GRATACAP.
In the county of Litchfield, Conn., in the midst of some of the most attractive hill country of that region, a very striking mineral fissure has been opened by Mr. S.L. Wilson, which, in both its scientific and commercial aspects, is equally important and interesting. It is a broad crevice, widened at the point of excavation into something like a pocket and filled, between its inclosing walls of gneiss, with a granitic mass whose elements have crystallized separately, so that an almost complete mineralogical separation has been effected of quartz, mica,and feldspar, while associated aggregates, as beryl and garnet, have formed under conditions that make them valuable gem fabrics.
The vein has a strike south of west and north of east and a distinct dip northwest, by which it is brought below the gneiss rock, which forms an overhanging wall, on the northerly side of the granitic mass, while on the southerly edge the same gneiss rock makes an almost vertical foot wall, and exhibits a sharp surface of demarkation and contact. The rock has been worked as an open cut through short lateral "plunges," or tunnels have been used for purposes of exploration in the upper part of its extent. Its greatest width appears to be fifty-one feet, and the present exposure of its length three hundred. It undergoes compression at its upper end, and its complete extinction upon the surface of the country at that point seems probable. At its lower end at the foot of the slope wherein the whole mass appears, it reveals considerable development, and affords further opportunities for examination, and, possibly, profitable investment. It has been formed by a powerful thrust coincident with the crumpling of the entire region, whereby deeply seated beds have become liquefied, and the magma either forced outward through a longitudinal vent or brought to the surface by a process of progressive fusion as the heated complex rose through superincumbent strata dissipated by its entrance and contributing their substance to its contents. The present exposure of the vein has been produced by denudation, as the coarsely crystalline and dismembered condition of the granite, with its large individuals of garnet and beryl, and the dense, glassy texture of the latter, indicate a process of slow cooling and complete separation, and for this result the congealing magma must necessarily have been sealed in by strata through which its heat was disseminated slowly.
For upon the most cursory inspection of the vein, the eye is arrested at once by the large masses of crystalline orthoclase, the heavy beds of a gray, brecciated quartz and the zones and columns of large leaved mica. It was to secure the latter that Mr. Wilson first exploited this locality, and only latterly have the more precious contents of the vein imparted to it a new and more significant character. The mica, called by Mr. Atwood, the superintendent of the work, "book mica," occurs in thick crystals, ranged heterogeneously together in stringers and "chimneys," and brilliantly reflecting the sunlight from their diversely commingled laminæ. This mica yields stove sheets of about two to three by four or five inches, and is of an excellent, transparent quality. It seems to be a true muscovite, and is seldom marred by magnetic markings or crystalline inclusions that would interfere with its industrial use. Seams of decomposition occur, and a yellowish scaly product, composed of hydrated mica flakes, fills them. The mica does not everywhere present this coarsely crystalline appearance, but in flexures and lines of union with the quartz and orthoclase is degraded to a mica schist upon whose surfaces appear uranates of lime and copper (autunite and torbernite), and in which are inclosed garnet crystals of considerable size and beauty. The enormous masses of clean feldspar made partially "graphic" by quartz inclosures are a conspicuous feature of the mine. In one part of the mine, wooden props support an overhanging ledge almost entirely composed of feldspar, which underneath passes into the gray brecciated quartz, which again grades into a white, more compact quartz rock. It is in this gray brecciated quartz that the beryls are found. These beautiful stones vary extremely in quality and color. Many of the large crystals are opaque, extensively fractured, and irregular in grain, but are found to inclose, especially at their centers, cores of gem-making material.
The colors of the beryls grade from an almost colorless mineral (goshenite) though faintly green, with blue reflections, yellowish green of a peculiar oily liquidity (davidsonite), to honey yellows which form the so-called "golden beryls" of the trade, and which have a considerable value. These stones have a hardness of 8,and when cut display much brilliancy. Many assume the true aquamarine tints, and others seem to be almost identical with the "Diamond of the Rhine," which as early as the end of the fifteenth century was used as a "fraudulent substitute for the true diamond" (King). Few, very few, belong to the blue grades, and the best of these cannot compare with those from Royalston, Mass. Those of amber and honey shades are beautiful objects, and under artificial light have a fascination far exceeding the olivine or chrysoberyl. These are not as frequent as the paler varieties, but when found excite the admiration of visitor and expert. It seems hardly probable that any true emeralds will be uncovered and the yellow beryls may not increase in number. Their use in the arts will be improved by combining them with other stones and by preparing the larger specimens for single stone rings.
Very effective combinations of the aquamarine and blue species with the yellow may be recommended. Tourmaline appears in some quantity, forming almost a schist at some points, but no specimens of any value have been extracted, the color being uniformly black. The garnets are large trapezohedral-faced crystals of an intense color, but penetrated with rifts and flaws. Many, no doubt, will afford serviceable gem material, but their resources have not yet been tested by the lapidary.
While granite considered as a building stone presents a complex of quartz, mica, and feldspar so confusedly intercrystallized as to make a homogeneous composite, in the present mass, like the larger and similar developments in North Carolina, these elements have excluded each other in their crystallization, and are found as three separate groups only sparingly intermingled. The proportions of the constituent minerals which form granite, according to Prof. Phillips, are twenty parts of potash feldspar (orthoclase), five parts of quartz, and two parts of potash mica (muscovite), and a survey of Mr. Wilson's quarry exhibits these approximate relations with surprising force.
There can be but little doubt that this vein is a capital example of hydrothermal fusion, whereby in original gneissic strata, at a moderate temperature and considerable depth, through the action of contained water, with the physical accompaniment of plication, a solution of the country rock has been accomplished. And the cooling and recrystallization has gone on so slowly that the elements of granite have preserved a physical isolation, while the associated silicates formed in the midst of this magma have attained a supremely close and compact texture, owing to the favorable conditions of slow growth giving them gem consistencies. The further development of the vein may reveal interesting facts, and especially the following downward of the rock mass, which we suspect will contract into a narrower vein. At present the order of crystallization and separation of the mineralogical units seems to have been feldspar, mica, garnet, beryl, quartz.
In the artificial preparation of crystals it is invariably found that perfect and symmetrical crystals, and crystals of large size, are produced by slow, undisturbed cooling of solutions; the quiet accretion permits complete molecular freedom and the crystal is built up with precision. Nor is this all. In mixtures of chemical compounds it is presumable that the separate factors will disengage themselves from each other more and more completely, and form in purer masses as the congelation is slowly carried on. A sort of concretionary affinity comes into play, and the different chemical units congregate together. At least such has been the case in the granitic magma of which Mr. Wilson now possesses the solidified results. The feldspar, the quartz, the mica, have approximately excluded each other, and appear side by side in unmixed purity. And does it not seem probable that this deliberate process of solidification has produced in the beryls, found in the center of the vein at the points of slowest radiation, the glassy gem texture which now makes them available for the purposes of art and decoration?
THE STUDY OF MANKIND.
Professor Max Muller, who presided over the Anthropological Section of the British Association, said that if one tried to recall what anthropology was in 1847, and then considered what it was now, its progress seemed most marvelous. These last fifty years had been an age of discovery in Africa, Central Asia, America, Polynesia, and Australia, such as could hardly be matched in any previous century. But what seemed to him even more important than the mere increase of material was the new spirit in which anthropology had been studied during the last generation. He did not depreciate the labors of so-called dilettanti, who were after all lovers of knowledge, and in a study such as that of anthropology, the labors of these volunteers, or franc-tireurs, had often proved most valuable. But the study of man in every part of the world had ceased to be a subject for curiosity only. It had been raised to the dignity and also the responsibility of a real science, and was now guided by principles as strict and rigorous as any other science. Many theories which were very popular fifty years ago were now completely exploded; nay, some of the very principles by which the science was then guided had been discarded. Among all serious students, whether physiologists or philologists, it was by this time recognized that the divorce between ethnology and philology, granted if only for incompatibility of temper, had been productive of nothing but good.