BRANCH CŒLENTERATA: THE POLYPS, SEA-ANEMONES, CORALS, AND JELLYFISHES

The structure and life-history of an example of the polyps (the Fresh-water Hydra, Hydra sp.) has been studied in Chapters [X] and [XI].

OTHER POLYPS, SEA-ANEMONES, CORALS, AND JELLYFISHES

Technical Note.—The teacher should have, if possible, several pieces of coral and a few specimens of Cœlenterates in alcohol or formalin, which will show the external character, at least, of these animals (see account of laboratory equipment, p. [450]). If the school is on the coast, the pupils should be shown the sea-anemones of the tide-pools.

The animals which are included in the branch Cœlenterata are, at least in living condition, unfamiliar to most of us. Like the sponges, they are almost all inhabitants of the ocean; a few, like Hydra, live in fresh water. Like the sponges, too, most of the members of this branch are fixed, and in their general appearance suggest a plant rather than an animal. The name zoophytes, or plant-animals, which is often applied to these animals is based on this superficial resemblance. But many of the Cœlenterates lead an active free-swimming life. This is true of the jellyfishes which float or swim about on or near the surface of the ocean. Many of the zoophytes spend part of their life in an active free-swimming condition before settling down, becoming attached and thereafter remaining fixed. In localities near the seashore many animals belonging to this great group can be readily found and observed. The beautiful sea-anemones with their slowly-waving tentacles, the fine many-branched truly plant-like hydroids with their hosts of little buds, and the soft colorless masses of jelly, the jellyfishes, which are cast up on to the beaches by the waves are all animals belonging to the branch Cœlenterata.

General form and organization of body.—The general or typical plan of body-structure for the Cœlenterata, these animals which come next to the sponges in degree of complexity, can best be understood by imagining the typical cylindrical or vase-like body of the simple sponges to be modified in the following way: The middle one of the three layers of the body-wall not to be composed of scattered cells in a gelatinous matrix, but to be simply a thin non-cellular membrane; the body-wall not to be pierced by fine openings or pores, but connected with the outside only by the single large opening at the free end, and this opening to be surrounded by a circlet of arm-like processes or tentacles, which are continuations of the body-wall and similarly composed. Such a body-structure, which we saw well shown by Hydra, is the fundamental one for all polyps, sea-anemones, corals, and jellyfishes. The variety in shape of the body and the superficial modifications of this type-plan are many and striking, but after all the type-plan is recognizable throughout the whole of this great group of animals.

The two chief body-shapes represented in the branch are those of the polyps on the one hand, and the jellyfishes or medusæ on the other. The polyp-shape is that of a tube with a basal end blind or closed, attached to some firm object in the water and with the free end with an opening, the mouth-opening. At this mouth-end there is a circlet of movable, very contractile tentacles. The mouth may open directly into the interior of the body, which interior may be called the digestive cavity, or it may lead into a simple short tube produced by the invagination or bending in of the body-wall, which may be looked on as the simplest kind of œsophagus. This œsophageal tube opens into the body-cavity or digestive cavity. This cavity may be incompletely divided by longitudinal partitions which project from the sides into the cavity.

The jellyfish or medusoid body-form corresponds in general to an umbrella or bell. Around the edge of this umbrella are disposed numerous threads or tentacles (corresponding to the circlet of tentacles in the polyp). The mouth-opening is at the end of a longer or shorter projection which hangs down from the middle of the under side of the umbrella. The interior body-cavity or digestive cavity extends out into the umbrella-shaped part of the body, usually in the condition of canals radiating from the centre and a connecting canal running around the margin of the umbrella.

Structure.—Although the Cœlenterata show little indication of the complex composition of the body out of organs, as it exists among the higher animals, yet they do show an unmistakable advance on the simple, almost organless body of the sponges. This is chiefly shown by the differentiation among the cells which compose the body. In the polyps and jellyfishes some of the cells are specialized to be unmistakable muscle-cells, some to be nerve-cells and fibres, and so on. A very simple nervous system consisting of small groups of nerve-cells connected by nerve-fibres exists. Some very simple special sense-organs may occur. The digestive system, although in the simpler Cœlenterates consisting merely of the cylindrical body-cavity enclosed by the body-wall and opening by the single hole at the free end of the body, in some is rather complex and is composed of different parts. Those Cœlenterates which are not fixed but lead an active, free-swimming life, viz., the jellyfishes or medusæ, are the most highly organized.

The tentacles which surround the mouth-opening and serve to grasp food and carry it into the mouth, and the stinging or lasso threads with which these tentacles are provided are special organs possessed by most of these animals.

Skeleton.—Like the sponges, some of the Cœlenterata possess a hard skeleton. This skeleton is always composed of calcium carbonate and is called coral. Those polyps which form such a skeleton are called the corals. Coral will be described in connection with the account of the coral-polyps.

Development and life-history.—The polyps and jellyfishes reproduce both asexually and sexually. The asexual mode is usually that of budding. On a polyp a bud is formed by a hollow outgrowth of the body-wall. The bud grows, an opening appears at its distal end, a circlet of tentacles arises about this mouth-opening and a new polyp individual is formed. This individual may separate from the parent or it may remain attached to it. By the development of numerous buds, and the remaining attached of all of the individuals developing from these buds, a colony of polyp individuals may be formed, plant-like in appearance. The various polyp individuals of a colony may differ somewhat among themselves, and these differences are correlated with a division of labor. Thus some of the individuals may devote themselves to getting food for the colony, and these have mouth and tentacles. Others may be devoted to the production of new individuals by budding or by producing germ-cells, and may not have any mouth-opening or any food-grasping tentacles.

In case of many polyps all or some of the new individuals which arise by budding do not become polyps, but develop into medusæ or jellyfish, which separate from the fixed polyp and swim off through the water. These medusæ or jellyfish produce sperm-cells and egg-cells. The sperm-cells fertilize the egg-cells and a new individual develops from each fertilized egg. This new individual is at first an active free-swimming larva called a planula, which does not resemble either a medusa or polyp. After a while it settles down, becomes fixed and develops into a polyp. Thus a polyp may produce a medusa or jellyfish which, however, produces not a new jellyfish, but a polyp. This is called an alternation of generations, and is not an uncommon phenomenon among the lower animals. It results from such an alternation of generations that a single species of animal may have two distinct forms. This having two different forms is called dimorphism. Sometimes, indeed, a species may appear in more than two different forms; such a condition is called polymorphism.

Not all medusæ or jellyfish are produced by polyp individuals, nor do jellyfish always produce polyps and not jellyfishes. There are some jellyfishes (we might call them the true jellyfishes) which always have the jellyfish form, producing new jellyfishes either by budding or by eggs, and there are some polyps which always have the true polyp form, producing new individuals, either by budding or by eggs, always of polyp form and never of jellyfish form. That is, some species of Cœlenterata exist only in polyp form, some species exist only in jellyfish form, while some species (those having an alternation of generations) exist in both polyp and jellyfish form, these two forms appearing as alternate generations.

Classification.—The branch Cœlenterata is divided into four classes: (1) the Hydrozoa, including the fresh-water polyps, numerous marine polyps, many small jellyfishes and a few corals; (2) the Scyphozoa, including most of the large jellyfishes; (3) the Actinozoa, including the sea-anemones and most of the stony corals; (4) the Ctenophora, including certain peculiar jellyfishes.

Fig. 13.—The Portuguese Man-of-War (Physalia sp.). (From specimen from Atlantic Coast.)

The polyps, colonial jellyfishes, etc. (Hydrozoa).—To the class Hydrozoa belongs the Hydra already studied. There are a few other fresh-water polyps and they all belong to this class. The most interesting members of the class are the "colonial jellyfishes," constituting the order Siphonophora. These colonial jellyfishes are floating or swimming colonies of polypoid and medusoid individuals in which there is a marked division of labor among the individuals, accompanied by marked differences in structural character. The individuals are accordingly polymorphic, that is, appear in various forms, although all belong to the same species. Because these various individuals forming a colony have given up very largely their individuality, combining together and acting together like the organs of a complex animal, they are usually not called individuals, nor on the other hand organs, but zooids, or animal-like structures. The beautiful "Portuguese man-of-war" (fig. [13]) is one of these colonial jellyfishes. It appears as a delicate bladder-like float, brilliant blue or orange in color, usually about six inches long, and bearing on its upper surface which projects above the water a raised parti-colored crest, and on its under surface a tangle of various appendages, thread-like with grape-like clusters of little bell- or pear-shaped bodies. Each of these parts is a peculiarly modified polyp- or medusa-zooid produced by budding from an original central zooid. The Portuguese man-of-war is very common in tropical oceans, and sometimes vast numbers swimming together make the surface of the ocean look like a splendid flower-garden.

Fig. 14.—A colonial jellyfish (Siphonophora).
(After Haeckel.)

Usually the central zooid in a Siphonophore to which the other zooids are attached is not a bladder-like float, but is an upright tube of greater or less length. In the Siphonophore shown in figure [14], the compound body is composed of a long central hollow stem with hundreds or thousands of variously shaped parts, each of which is reducible to either a polyp or medusazooid, attached around it. The upper end is enlarged to form an air-filled chamber, a sac-like boat, by means of which the whole colony is kept afloat. Around the upper end of the central stem are many medusoid structures, the swimming-bells, by means of whose opening and closing the whole colony is made to swim through the water. Each swimming-bell is a modified medusa-zooid, without tentacles, without digestive or reproductive organs, but exercising the power of swimming by contracting and forcing the water out of the hollow bell just as is done by the free medusæ. Below the swimming-bells, at the lower end of the central stem, are grouped many structures presenting at first sight a confusion of variety and complexity, but on careful examination revealing themselves to be polyp- and medusa-zooids modified to form at least five kinds of particularly functioning structures. There are many flattened scale-like parts whose function is simply that of affording a passive protection, in times of danger, to the other structures. These protecting-scales are greatly modified medusa-zooids, each consisting of a simple cartilage-like gelatinous mass penetrated by a food-carrying canal. Under the broad leaves of these protecting-zooids are a number of pear-shaped bodies which have a wide octagonal mouth-opening at their free end, and possess in their interior certain digestive glands. Each one is provided with a very long flexible tentacle which bears many fine stinging-threads. The tentacle waves back and forth in the water, and on coming in contact with an enemy or with prey its poisonous stinging-threads shoot out and paralyze or wound the unfortunate animal. These pear-shaped bodies are the feeding structures, each being a modified polyp-zooid. Scattered among these dangerous structures are many somewhat similarly shaped but wholly harmless structures, the sense-structures. Each of these has a pear-shaped body but without mouth-opening, and also a long, very sensitive, tentacle-like process. The sense of feeling is highly developed in these tentacles, and they discover for the colony the presence of any strange body. These sense-structures are modified polyp-zooids. Finally there are two other kinds of structures, usually arranged in groups like bunches of grapes, which are the reproductive structures, male and female. They are modified medusa-zooids grown together and without tentacles. This whole colony, or this compound animal, floats or swims about at the surface of the ocean, and performs all of the necessary functions of life as a single animal composed of organs might. Yet the Siphonophore is more truly to be regarded as a community in which the hundreds or thousands of animals, representing five or six kinds of individuals, all of one species, are fastened together. Each individual performs the particular duties devolving upon its kind or class. Thus there are food-gathering individuals, locomotor individuals, sense individuals, and reproductive individuals. The modifications of the various kinds of individuals are more extreme than in the case of the various kinds of individuals composing a bee-community, for example, but the holding together or fusing of all into one body or corporation is a condition which makes this greater modification necessary and not unexpected. And there is no difficulty in seeing that each of these parts is really, structurally considered, a modified polyp or medusa.

Fig. 15.—A jellyfish or medusa, Gonionema vertens, eating two small fishes. (From specimen from Atlantic Coast.)

The large jellyfishes, etc. (Scyphozoa).—To the class Scyphozoa belong most of the common large jellyfishes. When one walks along the sea-beach soon after a storm one may find many shapeless masses of a clear jelly-like substance scattered here and there on the sand. These are the bodies or parts of bodies of jellyfishes which have been cast up by the waves. Exposed to the sun and wind the jelly-like mass soon dries or evaporates away to a small shrivelled mass. The body-substance of a jellyfish contains a very large proportion of water; in fact there is hardly more than 1 per cent of solid matter in it.

The jellyfishes occur in great numbers on the surface of the ocean and are familiar to sailors under the name of "sea-bulbs." Some live in the deeper waters; a few specimens have been dredged up from depths of a mile below the surface. They range in size from "umbrellas" or disks a few millimeters in diameter to disks of a diameter of two meters (2-1/6 yards). They are all carnivorous, preying on other small ocean animals which they catch by means of their tentacles provided with stinging-threads. The tentacles of some of the largest jellyfishes "reach the astonishing length of 40 meters, or about 130 feet." Many of the jellyfishes are beautifully colored, although all are nearly transparent. Almost all of them are phosphorescent, and when irritated some emit a very strong light.

The sea-anemones and corals (Actinozoa).—Almost everywhere along the seashore where there are rocks and tide-pools a host of various kinds of sea-anemones can be found. When the tide is out, exposing the dripping seaweed-covered rocks, and the little sand- or stone-floored basins are left filled with clear sea-water, the brown and green and purple "sea-flowers" may be found fixed to the rocks by the base with the mouth-opening and circlet of slowly-moving tentacles hungrily ready for food (fig. [16]). Touch the fringe of tentacles with your fingertip and feel how they cling to it and see how they close in so as to carry what they feel into the mouth-opening. A host of individuals there are, and scores of different kinds; some small, some large, some with the body covered outside with tiny bits of stone and shell so that they are hardly to be distinguished from the rock to which they cling; some of bright and showy colors. These are the most familiar members of the class Actinozoa.

Fig. 16.—Sea anemones, Bunodes californica, open and closed individuals. The closed individuals in upper right-hand corner show the external covering of small bits of rock and shell, characteristic of most individuals of this species. (From living specimens in a tide-pool on the Bay of Monterey, California.)

But in other oceans, along the coasts of other lands, especially those of the tropics and sub-tropics, there are some other members of the class which are of unusual interest. They are the corals, or coral polyps. We know these animals chiefly by their skeletons (fig. [17]). The specimens of corals which one sees in collections, or made into ornaments, are the calcareous skeletons of various kinds of the coral polyps. Some of the corals live together in enormous numbers, forming branching colonies fixed as closely together as possible, and secrete while living a stony skeleton of carbonate of lime. These skeletons persist after the death of the animals, and because of their abundance and close massing form great reefs or banks and islands. These coral reefs and islands occur only in the warmer oceans. In the Atlantic they are found along the coasts of Southern Florida, Brazil and the West Indies; in the Pacific and Indian Oceans there are great coral reefs on the coast of Australia, Madagascar and elsewhere, and certain large groups of inhabited islands like the Fiji, Society, and Friendly Islands are exclusively of coral formation. Coral islands have a great variety of form, although the elongated, circular, ring-shaped and crescent forms predominate. How such islands are first formed is described as follows by a well-known student of corals:

Fig. 17.—Skeleton of a branching coral, Madrepora cervicornis. (From specimen.)

"A growing coral plantation, with its multitudinous life, oftentimes arises from great depths of the ocean, and the sea-bed upon which it rests is probably a submarine bank or mountain, upon which have lodged and slowly aggregated the hard skeletons of pelagic forms of life. When, through various sources of increase, this submarine bank approaches the depth of from one hundred to one hundred and fifty feet from the surface of the water, there begins on its top a most wonderful vital activity. It is then within the bathymetric zone of the reef-building corals. Of the many groups of marine life which then take possession of the bank, corals are not the only animals, but they are the most important, as far as its subsequent history goes. As the bank slowly rises by their growth, it at last approaches the surface of the water, and at low tide the tips of the growing branches of coral are exposed to the air. This, however, only takes place in sheltered localities, for long before it has reached this elevation it has begun to be more or less changed and broken by the force of the waves. As the submarine bank approaches the tide level, the delicate branching forms have to meet a terrific wave-action. Fragments of the branching corals are broken off from the bank by force of the waves, and falling down into the midst of the growing coral below fill up the interstices, and thus render the whole mass more compact. At the same time larger fragments are broken and rolled about by the waves and are eventually washed up into banks upon the coral plantation, so that the island now appears slightly elevated above the tides. This may be called a first stage in the development of a coral island. It is, however, little more than a low ridge of worn fragments of coral washed by the high tides and swept by the larger waves—a low, narrow island resting on a large submarine bank."

When the coral island rises thus a little above the surface of the water, the waves break up some of the coral into fine sand, which fills in the interstices, and offers a sort of soil in which may germinate seeds brought in the dried mud on the feet of ocean birds or carried by the ocean currents. With the beginning of vegetable growth the soil is more firmly held, is fertilized and ready for the seeds of plants which need a better soil than lime sand. Flying insects find their way to the island, especially if it be near the mainland, birds begin to nest on it, and soon it may be the seat of a luxuriant plant and animal life.

For an account of coral islands see Darwin's "The Structure and Distribution of Coral Reefs."

There are over 2000 kinds of coral polyp known, and their skeletons vary much in appearance. Because of the appearance of the skeleton certain corals have received common names, as the organ-pipe coral, brain coral, etc. The red coral, of which jewelry is made, grows chiefly in the Mediterranean. It is gathered especially on the western coast of Italy, and on the coasts of Sicily and Sardinia. Most of this coral is sent to Naples, where it is cut into ornaments.

There are other interesting members of the class Actinozoa like the beautiful sea-pens, sea-feathers and sea-fans, delicate, branching, tree-like forms found all over the world.

Ctenophora.—The members of this class are mostly small, peculiar jellyfishes which do not form colonies, and are extremely delicate, being usually perfectly transparent. They swim by means of cilia. They never appear in a polyp condition, but are always medusoid in shape.


[CHAPTER XVIII]