BRANCH PORIFERA: THE SPONGES

THE FRESH-WATER SPONGE (Spongilla sp.)

Technical Note.—Fresh-water sponges may perhaps not be readily found in the neighborhood of the school, but they occur over most of the United States, and careful searching will usually result in the finding of specimens. They are compact, solid-looking masses, sometimes lobed, resting on and attached to rocks, logs, timbers, etc., in clear water in creeks, ponds, or bayous. They are creamy, yellowish-brown or even greenish in color and resemble some cushion-like plant far more than any of the familiar animal forms. They can be distinguished from plants, however, by the fact that there are no leaves in the mass, nor long thread-like fibres such as compose the masses of pond algæ (pond scum). When touched with the fingers a gritty feeling is noticeable, due to the presence of many small stiff spicules. Sponges should be removed entire from the substance they are attached to, and may be taken alive to the laboratory. They die soon, however, and should be put into alcohol before decay begins.

Note the form of the sponge mass. Is it lobed or branched? Examine the surface for openings. These are of two sizes; the larger are osteoles or exhalant openings, while the smaller and more numerous are pores or inhalant openings. The sponge-flesh is called sarcode. Examine a bit of sarcode under the microscope; note the spicules. Have these spicules a regular arrangement? Of what are they composed?

Draw the entire sponge, showing shape and openings; draw some of the spicules.

Embedded in the body-substance, especially near the base, note (if present) numerous small, yellowish, sub-spherical or disk-like bodies, the gemmules. These are reproductive bodies. Each gemmule is a sort of internal bud. It is composed of an interior group of protoplasmic cells, enclosed by a crust thickly covered with spicules. In winter the sponge dies down and the gemmules are set free in the water. In spring the protoplasmic contents issue through an aperture in the crust, called the micropyle or foraminal opening, and develop and grow into a new sponge.

For a good account of the fresh-water sponge, see Pott's "Fresh-water Sponges."

A CALCAREOUS OCEAN-SPONGE (Grantia sp.) (fig. [7], D, E, F.)

Technical Note.—For inland schools, specimens preserved in alcohol or formalin must be used. They may be obtained from dealers in naturalists' supplies (see p. [453]). Specimens of some species of this genus can be obtained at almost any point on the Atlantic or Pacific coasts of this country.

Examine the external structure of a specimen. Note the elongate, sub-cylindrical form, the attached base, the free end. Note the large exhalant opening, osteole or osculum, at the free end; the numerous small inhalant openings elsewhere on the surface (best seen in dried specimens). Note the spicules covering the surface of the body, and the longer ones surrounding the osculum. Cut the sponge in two longitudinally and note the simple cylindrical body-cavity, the gastric cavity or cloaca. Note the thickness of the body-wall; note the tubes running through the body-wall from cloaca to external surface. Through these tubes water laden with food enters the gastric cavity, where the food is digested, the water and undigested particles passing out through the osculum. Crush a bit of dried sponge, or boil a bit of soft sponge in caustic potash and mount on a glass slide. Examine under a microscope and note the abundance of spicules and the variety in their form. Two kinds may always be found, and sometimes three. These spicules are composed of carbonate of lime and can be dissolved by pouring on to them a drop of hydrochloric acid.

Some of the sponges may have buds growing out from them near the base. These buds are young sponges developed asexually. If allowed to develop fully the buds would have detached themselves from the parent and each would have become a new sponge.

Make drawings showing the form of a whole sponge; the appearance of the inner face of the sponge bisected longitudinally; the shape of the spicules.

A COMMERCIAL SPONGE

Technical Note.—For the study of the skeleton of an ocean-sponge with more complex body buy several common small bath-sponges without large holes running entirely through them. The teacher should have also a few specimens of small marine sponges preserved in alcohol or formalin. Such specimens should be part of the laboratory equipment (see account of laboratory equipment, p. 450), and can be readily and cheaply obtained from dealers in naturalists' supplies.

The bath-sponge or slate-sponge consists simply of the hard parts or skeleton of a sponge animal. In life all of the skeleton is enclosed or covered by a soft, tough mass composed of layers of cells. Note the many openings on the surface of the sponge. Crush a bit of the skeleton and examine it under the microscope. Note that it is composed of fine fibres of a tough, horny substance called spongin, instead of tiny distinct calcareous spicules.

OTHER SPONGES

The sponges are fixed, plant-like aquatic animals. The members of a single family live in fresh water, being found in lakes, rivers, and canals in all parts of the world. All the other sponges, and there are several thousand species known, live in the ocean. They are to be found at all depths, some in shallow water near the shore and others in deeper water, even to the deepest depths yet explored. They are found in all seas, though especially abundantly in the Atlantic Ocean and Mediterranean Sea.

Fig. 12.—The skeleton of a
"glass" sponge (skeleton
composed of siliceous spicules)
from Japan. (From specimen.)

Form and size.—The shape of the simplest sponges is that of a tiny vase or nearly cylindrical cup, hollow and attached at its base. At the free end there is a large opening. But there is a great deal of variety in the form and size of different sponges. There is, indeed, much variation in the shape and general character of different individuals of the same species. Unlike most other animals, sponges are fixed, and the character of the surface to which a sponge is attached has much influence upon its shape. If this surface is rough and uneven the sponge may follow in its growth the sinuosities of the surface and so become uneven and distorted in shape. At best, only a few kinds of sponges have any very even and symmetrical shape. Most of them are very unsymmetrical and grow more like a low compact bushy plant than like the animals we are familiar with. The smallest sponges are only 1 mm. (1/25 in.) high, while the largest may be over a meter (39 in.) in height. In color living sponges may be red, purple, orange, gray, and sometimes blue. Most sponges have the whole body of one color.

Skeleton.—A very few sponges have no skeleton at all. The others have a skeleton or hard parts composed of interwoven fibres of the tough, horny substance called spongin, or of hosts of fine needles or spicules of silica or of carbonate of lime. The siliceous skeletons of some of the so-called glass-sponges (fig. [12]) are very beautiful. The lime and siliceous sponge spicules exhibit a great variety of outline, some being anchor-shaped, some cross-shaped, and some resembling tiny spears or javelins.

Structure of body.—The skeleton of a sponge whether composed of interlacing fibres or of short spicules is always invisible from the outside when the sponge is alive. It is embedded in, or clothed by, the soft, fleshy part of the body. The soft part of the sponge is composed simply of two layers of cells, one constituting the external surface of the body, and the other lining the interior cavities and canals of the body. Between these two cell-layers there is a mass of soft gelatinous substance all through which protoplasm ramifies, and in which are embedded numerous scattered cells. There are, as seen in the case of Spongilla and Grantia, no systems of organs such as characterize the higher animals. No heart, lungs, alimentary canal, nervous system, organs of locomotion, eyes, ears, or other organs of special sense; the sponge has none of these. It is simply an aggregate of cells, arranged in two layers, and supported usually by a skeleton of horny fibres or calcareous or siliceous spicules. Its body is usually shapeless, unsymmetrical and without front or back, right or left. It is not to be wondered at that sponges were for a long time believed to be plants.

Feeding habits.—The sponges feed on minute bits of animal or plant substance and on the microscopic unicellular plants or animals which float in the water which bathes their bodies. The water entering the sponge-body through the various openings of the surface is moved along by the waving or lashing of the flagella of the cells which line the canals, and these currents of water bear with them the tiny organisms which are taken up by these same cells and digested. The incoming currents of water meet in the central cavity or cavities of the body and pass out through the large opening called the osculum at the free end of the vase-like body, or if the body is branched, through the large openings at the tips of these branches.

The same currents of water bring also oxygen for the sponge's breathing and carry away the carbonic acid gas given out by the body-cells.

As a German naturalist has said, the one necessary condition for the life of a sponge is the streaming of water through its body. All sponges have a system of canals for this water-current and all have means, in the waving flagella or cilia with which these canals are lined, for producing these currents. When a live sponge is put into a vessel of water, currents are immediately set up, and they always flow into the body through the many fine openings and out of the body through the osculum.

Development and life-history.—Although the sponge in its adult condition is permanently attached by its base to the sea-bottom or to some rock or shell, when it is first born it is an active free-swimming creature. The sponges reproduce in two ways, asexually and sexually. The asexual mode of reproduction of the fresh-water sponge by gemmules has already been described. The ocean sponges also reproduce asexually either by forming interior gemmules or external buds. In this latter method a bud forms on the outer surface of the body which increases in size and finally grows into a new sponge individual. In some species this new sponge does not become separated from the body of the mother, but remains attached to it like a branch to a tree-trunk. By the continued production of such non-separating individuals, a colony of sponges is formed which has the general appearance of a branching plant. In other species the new sponge formed by the development and growth of a bud falls off and becomes a distinct separate individual.

In the sexual mode of reproduction, male or sperm-cells and female or egg-cells are developed in the same individual. The sperm-cells are motile and swim about in the cavities and canals of the sponge-body until they find egg-cells, which they fertilize. The fertilized eggs begin to develop and pass through their first stages in the sponge-body. Finally the embryo sponge, which is usually a tiny oval or egg-shaped mass of cells, escapes from the body of the parent into the water. The young sponge has some of its outer cells provided with cilia, and by means of these it swims about. After a while it comes to rest on the ocean-floor or on some rock or shell, attaches itself, and begins to take on the form and character of the parent. It leads hereafter a fixed sedentary life.

The sponges of commerce.—The sponge-skeletons which are the "sponges" that we use all belong to a few species, not more than half a dozen. Most of the commercial sponges come from the Mediterranean Sea, though some come from the Bahama Islands, some from the Red Sea, and a few from the coasts of Greece, Asia Minor, and Africa. The commercial sponges do not live in very deep water; they are usually found not deeper than 200 feet. The living sponges are collected by divers, or are dragged up by men in boats using long-poled hooks, or dredges. "When secured they are exposed to the air for a limited time, either in the boats or on shore, and then thrown in heaps into the water again in pens or tanks built for the purpose. Decay thus takes place with great rapidity, and when fully decayed they are fished up again, and the animal matter beaten, squeezed, or washed out, leaving the cleaned skeleton ready for the market. In this condition after being dried and sorted, they are sold to the dealers, who have them trimmed, re-sorted and put up in bales or on strings ready for exportation. There are many modifications of these processes in different places, but in a general way these are the essential-steps through which the sponge passes before it is considered suitable for domestic purposes. Bleaching-powders or acids are sometimes used to lighten the color, but these unless very delicately handled injure the durability of the fibres."

Classification.—The sponges are classified according to the character of the skeleton. In one group are put all those sponges which have a skeleton of calcareous spicules, and this group is called the Calcarea. All other sponges are grouped as Non-Calcarea, the members of this group either having no skeleton at all, or having a skeleton composed of siliceous spicules or of spongin fibres. According to the absence or presence of a skeleton and the character of the skeleton when it exists the Non-Calcarea are subdivided into smaller groups.


[CHAPTER XVII]