Atomic Structure

Practically everyone nowadays is to some extent familiar with the atomic structure of matter. Atomic energy, nuclear reactors, and radioisotopes are terms in everyday usage. However, to appreciate how radioisotopes can be applied to the study of life processes, we must have at least a working knowledge of their properties, their preparation, and their limitations. It is therefore appropriate to examine them in detail so that the succeeding chapters will be more easily understood.

According to present-day theory, an atom consists of a nucleus[4] that is made up of protons and neutrons[5] and is surrounded by electrons. In each atom there is an equal number of protons (positively charged) in the nucleus and electrons (negatively charged) moving concentrically around the nucleus; since neutrons have no electrical charge and since protons and electrons cancel each other’s charges, the whole atom is electrically neutral, or uncharged. Each atom is identified by an atomic number and an atomic weight. The atomic number of an element (for example, carbon, nitrogen, oxygen) is determined by the number of protons, or positive charges, carried by the nucleus (or by the number of electrons surrounding the nucleus, which is the same). The atomic weight is the weight of an atom as compared with that of the atom of carbon, which is taken as a standard. The weight, or mass, of an atom is due chiefly to its protons and neutrons because the mass of its electrons is negligible.