Replication of DNA

[Figure 11] is a diagram showing the essential structure of the large DNA molecule. According to the Watson-Crick model,[7] the molecule consists of two strands of smaller molecules twisted around each other to form a double helix. Each strand consists of a sequence of the smaller molecules linked linearly to each other. These smaller molecules are called nucleotides, and each consists of three still smaller molecules, a sugar (deoxyribose), phosphoric acid, and a nitrogen base. Each nucleotide and its nearest neighbor are linked together (between the sugar of one and the phosphoric acid of the neighbor). This leaves the nitrogen base free to attach itself, through hydrogen bonding, to another nitrogen base in the opposite strand of the helix.

In the DNA of higher organisms, there are only four types of nitrogen bases: adenine, guanine, thymine, and cytosine. Adenine in either strand of the helix pairs only with thymine in the opposite strand, and vice versa, and guanine pairs only with cytosine, and vice versa, so that each strand is complementary in structure to the other strand (see [Figure 12]). The full structure resembles a long twisted ladder, with the sugar and phosphate molecules of the nucleotides forming the uprights and the linked nitrogen bases forming the rungs. Each upright strand is essentially a mirror image of the other, although the two ends of any one rung are dissimilar.

Figure 11 Diagrammatic structure of the DNA molecule as proposed by the Watson-Crick model.

When DNA is replicated, or copied, as the organism grows, the two nucleotide strands separate from each other by disjoining the rungs at the point where the bases meet, and each strand then makes a new and similarly complementary strand. The result is two double-stranded DNA molecules, each of which is identical to the parent molecule and contains the same genetic material. When the cell divides, each of the two daughter cells gets one of the new double strands; each new cell thus always has the same amount of DNA and the same genetic material as the parent cell.

(All that has been said so far about DNA replication depends upon an assumption that the DNA molecule is in some way untwisted to allow separation of two helical strands, but there is no compelling reason to believe that such an untwisting does indeed take place, nor do we know, if the untwisting does take place, how it is accomplished. Much that has been said in the last few paragraphs is therefore purely speculative. It is, however, based on sound observation and is a more logical explanation than others that have been advanced.)

Figure 12 The pairing of the nucleotide bases that make up DNA.

Figure 13 The DNA molecule and how it replicates. (a) The constituent submolecules. (b) Assembly of subunits in complete DNA molecule. (c) “Unzipping” of the double nucleotide strand. (d) and (e) The forming of a new strand by each individual strand. (f) DNA molecule in twisted double-strand configuration.

Adapted from Viruses and the Nature of Life, Wendell M. Stanley and Evans C. Valens, E. P. Dutton & Co., Inc., 1961, with permission.