Wenn in einer Proportion die beiden innern Glieder gleich sind, wie in 2:6=6:18, so heisst eines der gleichen mittlern Glieder die mittlere Proportionale oder das geometrische Mittel der beiden äussern.

Das Perpendikel von einem beliebigen Punkte der Peripherie eines Kreises auf den Durchmesser ist die mittlere Proportionale zwischen den beiden Abschnitten des Durchmessers.

Die7 vom Scheitel des rechten Winkels eines rechtwinkligen Dreiecks auf die Hypotenuse gefällte Senkrechte ist das geometrische Mittel zwischen den Abschnitten der Hypotenuse.

Jede der beiden Sehnen ist die mittlere Proportionale zwischen dem anliegenden8 Abschnitt des Durchmessers und dem ganzen Durchmesser.

Jede Kathete ist das geometrische Mittel zwischen dem anliegenden Abschnitt der Hypotenuse (begrenzt durch die Höhe auf derselben) und der Hypotenuse selbst.

Aufgabe. Ein Quadrat zu zeichnen, welches so gross ist wie ein gegebenes Rechteck; mit anderen Worten, ein gegebenes Rechteck PBDE in ein an Inhalt gleiches Quadrat zu verwandeln.

Auflösung. Es kommt nur darauf an,9 zu den beiden gegebenen Seiten des Rechtecks PE und PB die mittlere Proportionale x zu finden, so dass PE:x=x:PB, denn dann ist x 2 =PE.PB.

Quadratur eines Rechteckes Man füge also PE geradlinig an PB, so dass AP=PE, beschreibe über AB, als Durchmesser, einen Halbkreis, errichte in P auf AB das Perpendikel MP, so ist das über dieses Perpendikel konstruierte Quadrat MPQR das verlangte, weil MP 2 =AP.PB=PE.PB.

8.

Ein Vieleck heisst regelmässig, wenn alle Seiten und alle Winkel gleichgross sind.