Fig. 20.
Die Figur 20 erläutert, wie man eine solche Curve durch Deformation verändern kann. Durch Fortsetzung des hierdurch angedeuteten Processes verwandelt sie sich in einen Curvenzug, der aus der inneren Randcurve der betreffenden Handhabe und einer zugehörigen Meridiancurve besteht, dessen Stücke aber beide zweimal in entgegengesetzter Richtung durchlaufen werden. Also auch eine solche Curve gibt keinen Beitrag zur Strömung. Man hätte dieses übrigens auch von Vorneherein aus der Bemerkung ersehen können, dass die jetzt betrachtete Curve, gleich einer solchen, die sich in einen Punct zusammenziehen lässt, die gegebene Fläche in getrennte Gebiete zerlegt.
Wir erzielen daher durch Heranziehen beliebiger geschlossener Curven nicht mehr, als durch geeignete Benutzung der [formula] Curven [formula], [formula]. Die allgemeinste überall endliche Strömung, welche wir hervorrufen können, wird entstehen, wenn wir jeden der [formula] Querschnitte zum Träger einer beliebigen constanten elektromotorischen Kraft machen. Oder anders ausgedrückt:
Die allgemeinste von uns zu construirende überall endliche Function ist diejenige, deren reeller Theil an den [formula] Querschnitten beliebig vorgegebene Periodicitätsmoduln aufweist.
§. 10. Die allgemeinste stationäre Strömung. Beweis für die Unmöglichkeit anderweitiger Strömungen.
Wenn wir die verschiedenen im vorigen Paragraphen construirten complexen Functionen des Ortes additiv zusammenfügen, so erhalten wir eine Function, deren Willkürlichkeit wir sofort übersehen. Indem wir die Bedingungen, die hinsichtlich der Unendlichkeitsstellen ein für allemal vorgeschrieben sind, nicht noch besonders erwähnen, können wir sagen: dass unsere Function an beliebig gegebenen Stellen in beliebig gegebener Weise unendlich wird und überdiess ihr reeller Theil an den [formula] Querschnitten beliebig gegebene Periodicitätsmoduln aufweist.
Ich sage nun, dass diess in der That die allgemeinste Function ist, der auf unserer Fläche eine einförmige Strömung entspricht. Zum Beweise mögen wir diese Behauptung auf eine einfachere reduciren. Ist irgend eine complexe Function der in Betracht kommenden Art auf unserer Fläche gegeben, so haben wir im Vorhergehenden das Mittel, eine zugehörige Function zu construiren, welche an denselben Stellen in derselben Weise unendlich wird, und deren reeller Theil an den Querschnitten [formula], [formula] dieselben Periodicitätsmoduln aufweist, wie der reelle Theil der gegebenen Function. Die Differenz der beiden Functionen ist eine neue Function, welche nirgendwo unendlich wird und deren reeller Theil an den Querschnitten verschwindende Periodicitätsmoduln besitzt, welche überdiess, wie selbstverständlich, wiederum eine einförmige Strömung definirt. Offenbar haben wir zu beweisen, dass eine solche Function nicht existirt, oder vielmehr, dass sie sich auf eine Constante reducirt.
Und in der That ist dieser Beweis nicht schwierig. Was eine Durchführung desselben in strenger Form betrifft, so will ich mich darauf beschränken, zu bemerken, dass dieselbe mit Hülfe des verallgemeinerten Green’schen Satzes gelingt(16). Die folgenden Betrachtungen sollen auf anschauungsmässigem Wege dieselbe Unmöglichkeit darthun. Mag man dieselben wegen der unbestimmten Form, die sie besitzen, vielleicht auch nicht als zwingend erachten(17), so scheint es doch nützlich, auch in dieser Weise den Gründen für das Bestehen jenes Theoremes nachzugehen.
Wir mögen den besonderen Fall [formula] vorweg nehmen und uns also fragen, wesshalb auf der Kugel eine einförmige, überall endliche Strömung unmöglich ist. Das Zweckmässigste scheint es zu sein, den Verlauf der Strömungscurven auf der Kugel zu verfolgen. Da Unendlichkeitspuncte nicht auftreten sollen, so kann eine Strömungscurve nicht plötzlich abbrechen, wie es in einem Quellenpuncte, oder in einem algebraischen Unstetigkeitspuncte geschieht. Ueberdiess halte man vor Augen, dass neben einander herlaufende Strömungscurven nothwendig gleichen Strömungssinn haben. Man erkennt dann, dass nur zweierlei Arten von nicht abbrechenden Strömungscurven möglich sind. Entweder die Curve windet sich, je länger um so enger, um einen asymptotischen Punct—dann haben wir wieder einen Unendlichkeitspunct—, oder die Curve ist geschlossen. Ist aber eine Strömungscurve geschlossen, so sind es die nächstfolgenden auch. Dabei schliessen sie einen kleineren und kleineren Theil der Kugelfläche ein. Es kann also nicht fehlen, dass man zu einem Wirbelpuncte, d. h. abermals zu einem Unendlichkeitspuncte geführt wird. Eine überall endliche Strömung ist also in der That unmöglich. Allerdings haben wir der Möglichkeit nicht gedacht, die in dem Auftreten von Kreuzungspuncten liegt. Diese Puncte sind jedenfalls nur, wie oben hervorgehoben, in endlicher Zahl vorhanden. Es wird also nur eine endliche Zahl von Strömungscurven geben, welche durch sie hindurchlaufen. Man denke sich die Kugel durch diese Curven in Gebiete zerlegt und wiederhole innerhalb der einzelnen Gebiete die gerade angestellten Betrachtungen, wobei sich das frühere Resultat von Neuem ergeben wird.
Nehmen wir nun [formula] und legen wieder die Normalflächen des §. 8 zu Grunde. Dass auf diesen Flächen überall endliche, einförmige Strömungen existiren, liegt nach dem gerade Gesagten an dem Auftreten der Handhaben. Eine auf der Normalfläche gezogene geschlossene Curve, die sich in einen Punct zusammenziehen lässt, kann ebensowenig, wie eine geschlossene Curve auf der Kugel, Strömungscurve für eine überall endliche Strömung sein. Aber auch eine Curve, wie wir sie in Figur (19) betrachteten, ist nicht zu brauchen. Denn an eine erste solche Strömungscurve müssen sich weitere schliessen nach Art der in Figur (20) dargestellten,—so dass wir zuletzt zu einer Curve gelangen, deren Theile zweimal in entgegengesetztem Sinne durchlaufen werden! Die Strömungscurve muss also nothwendig sich um die eine oder andere Handhabe herumwinden, mag diess ein einfaches Umfassen jener Handhabe sein, oder ein wiederholtes Umkreisen derselben im Sinne der Meridian- oder der Breitencurven. In allen Fällen lässt sich von der Strömungscurve ein Theil abtrennen, der im Sinne des vorigen Paragraphen mit einer ganzzahligen Combination der betreffenden Meridiancurve und der zugehörigen Breitencurve aequivalent ist. Nun wächst u, der reelle Theil der durch die Strömung definirten complexen Function, fortwährend, wenn man längs einer Strömungscurve fortschreitet. Andererseits liefern zwei Curven, welche im Sinne des vorigen Paragraphen aequivalent sind, bei Durchlaufung nothwendig dieselben Incremente von u. Es gibt also eine Combination wenigstens einer Meridiancurve und einer Breitencurve, deren Durchlaufung einen nicht verschwindenden Zuwachs von u herbeiführt. Das Gleiche gilt nothwendig von der betreffenden Meridiancurve oder der Breitencurve selbst. Der Zuwachs aber, den u beim Durchlaufen der Meridiancurve gewinnt, entspricht dem Ueberschreiten der Breitencurve, und umgekehrt. Daher hat u nothwendig wenigstens an einer Breitencurve oder Meridiancurve einen nicht verschwindenden Periodicitätsmodul, und eine überall endliche, einförmige Strömung, bei der alle diese Periodicitätsmoduln gleich Null sind, ist in der That unmöglich, w. z. b. w.