6 CO 2 + 6 H 2 O + 684000 cal = C 6 H 12 O 6 + 6 O 2.

Nach den Untersuchungen von BROWN und PURIEWITSCH kann man annehmen, daß ein Blatt in der Natur etwa 80% des auffallenden Sonnenlichtes absorbiert; davon wird weitaus der größte Teil zur Erwärmung verwendet, denn nur etwa 0,5–6% dienen der Assimilation. Unter besonderen Versuchsbedingungen, bei schwachem, gelbem Licht, das voll absorbiert wurde, konnte WARBURG eine Ausnützung bis zu 70% für assimilatorische Zwecke feststellen[172].

Wie jede Lebensfunktion ist auch die Assimilationstätigkeit eines Chloroplasten von einer ganzen Menge von inneren und äußeren Faktoren abhängig. Zu den inneren gehört das Vorhandensein des Chlorophyllfarbstoffes und seine Einlagerung in einen lebendigen Chloroplasten; der Farbstoff als solcher, aus der Pflanze herausgelöst, vermag so wenig die Kohlensäure zu zerlegen wie ein Chloroplast, der den grünen Farbstoff aus irgendwelchen Gründen nicht entwickelt hat (im Dunkeln gebildeter, in eisenfreier Nährlösung entstandener Chloroplast, Leukoplasten der unterirdischen Teile oder der Epidermis), oder ihn verloren hat (Chromoplast). Da aber die Assimilation keineswegs immer dem Chlorophyllgehalt proportional erfolgt, muß man mit WILLSTÄTTER[173] annehmen, daß neben dem Chlorophyllfarbstoff noch ein anderer Faktor wesentlich ist, mag das nun das Protoplasma der Chloroplasten oder ein in ihm enthaltenes Enzym (S. 229 ) sein.

Von äußeren Faktoren ist vor allem das schon besprochene Sonnenlicht zu nennen. Nächst ihm dann die Gegenwart von Kohlensäure. Da diese nur in geringer Menge in der Luft vorhanden ist und durch andere Verbindungen nicht ersetzt werden kann (auch nicht durch Kohlenoxyd), so müßte das Leben der Pflanze und damit die Existenz aller Organismen schließlich aufhören, wenn nicht fortwährend neue Kohlensäure auf der Erde entstände. Man schätzt die Menge des Kohlensäurevorrates in der Luft auf 2100 Billionen kg, die Menge der Kohlensäure, die jährlich von den grünen Pflanzen des Festlandes konsumiert wird, auf 50–80 Billionen kg; demnach würden die Pflanzen in einigen 30 Jahren diesen Vorrat erschöpfen[174].

Die Luft erhält andauernd große Kohlensäuremengen durch die Atmung von Organismen, durch Verbrennung von Holz und Kohle und durch vulkanische Tätigkeit. Ein erwachsener Mensch atmet täglich etwa 900 g Kohlensäure (245 g C) aus, die ganze Menschheit, zu 1400 Millionen gerechnet, also allein schon etwa 1200 Millionen Kilo CO 2 (340 Millionen Kilo C). Weitere große Massen von CO 2 liefern die übrigen Tiere, dann aber auch die Pflanzen, insbesondere Pilze und Bakterien (vor allem die Bodenbakterien). Die aus sämtlichen Schornsteinen der Erde entweichende Kohlensäure liefert enorme Werte, da allein in Deutschland im Jahre 1911 neben 73 Millionen Tonnen Braunkohlen 161 Millionen Tonnen Steinkohlen gefördert wurden; letztere würden schon etwa 400000 Millionen Kilogramm Kohlensäure ergeben, also etwa 1⁄5000 der Gesamtmenge der in der Atmosphäre enthaltenen CO 2.

Die Festlegung der Kohlensäure durch die grüne Pflanze und die Neuentstehung durch die angeführten Prozesse scheint annähernd zu einem Gleichgewicht zu führen. Man findet fast stets etwa 3 Liter CO 2 in 10000 Liter Luft; im Winter ist bei uns die Menge etwas größer (3,0–3,6 Liter) als im Sommer (2,7–2,9 Liter). (Die Luft des Bodens ist wegen der Tätigkeit der Bakterien CO 2 -reicher.) Diese 3 Liter CO 2 wiegen etwa 7 g; davon sind aber 8⁄11 Sauerstoff und nur 3⁄11 Kohlenstoff. In den 10000 Liter Luft sind demnach nur 2 g Kohlenstoff enthalten. In einem Baume von 100 Zentnern Trockengewicht sind etwa 50 Zentner oder 2500 Kilo Kohlenstoff angesammelt. Um diesen zu erlangen, muß der Baum also etwa 1250000 × 10000 Liter = etwa 12 Millionen Kubikmeter Luft von ihrer Kohlensäure befreit haben. Bei der Berücksichtigung solcher Zahlen findet man es begreiflich, daß die Entdeckung INGENHOUSS’ ungläubig aufgenommen, später ganz zurückgewiesen und vergessen wurde. Erst LIEBIG brachte sie in Deutschland wieder zur Geltung, und heute steht sie über allen Zweifel erhaben da. Die angeführten Zahlen haben aber nichts Ungeheuerliches, wenn man bedenkt, daß trotz des geringen Prozentgehaltes der Atmosphäre an Kohlensäure sich der tatsächlich vorhandene Vorrat auf etwa 2100 Billionen Kilo berechnet, in denen 560 Billionen kg Kohlenstoff enthalten sind. Den Pflanzen steht aber der ganze Vorrat des Luftmeeres zur Verfügung, da sich die Kohlensäure durch Diffusion und Luftströmungen immer wieder gleichmäßig ausbreitet.

Nach SCHRÖDER soll in den Landpflanzen der Erde der Kohlenstoff von 1100 Billionen Kilogramm CO 2 festgelegt sein, also etwa die Hälfte des in der Luft enthaltenen; fast 90% davon kommt auf das Holz der Bäume. Die Tierwelt scheint ganz außerordentlich viel weniger Kohlenstoff zu enthalten, etwa 1% des in den Pflanzen angesammelten.

Submerse Wasserpflanzen nehmen die im Wasser gelöste Kohlensäure auf. Hier schwankt ihre Menge in sehr beträchtlicher Weise je nach der Temperatur. Bei 15° C enthält der Liter Wasser ungefähr ebensoviel CO 2 als ein Liter atmosphärischer Luft. Neben der Kohlensäure spielen aber auch die gelösten Bikarbonate, die in Karbonat und CO 2 dissoziieren, eine wichtige Rolle für den Kohlenstoffgewinn der Wasserflora. Eine künstliche Bereicherung des Wassers durch Einleiten von Kohlensäure vermehrt bis zu einem gewissen Grade die Assimilation.

Die geringe Menge der in der Luft enthaltenen Kohlensäure macht eine große aufnehmende Fläche notwendig. Somit sind auch aus diesem Grunde, nicht nur wegen der Lichtabsorption, die Laubblätter flächenförmig gestaltet. Eine Vermehrung des CO 2 -Gehaltes der Luft hat, wenn sie nicht zu weit geht, eine vermehrte Assimilation zur Folge. Demnach kann durch künstliche Anreicherung der Luft mit CO 2 eine ganz erhebliche Steigerung der landwirtschaftlichen Produktion erzielt werden. Es unterliegt keinem Zweifel mehr, daß die günstigere Wirkung der Stallmistdüngung gegenüber der Zufuhr von mineralischem Dünger u. a. auch durch die fortgesetzte starke CO 2 -Produktion von Bakterien[175] bedingt ist, die im Boden die nötigen organischen Nährstoffe finden und die ihre Atmungskohlensäure aus dem Boden in die Luft übertreten lassen.

Wie alle Lebensprozesse ist auch die CO 2 -Assimilation von der Temperatur abhängig. Sie beginnt bei Temperaturen hart unter Null, erreicht ihren größten Wert bei etwa 37° C und hört bei etwa 45° C wieder auf.