Fig. 279. Verlauf einer geotropischen Bewegung. Die Figuren 1 – 16 bezeichnen aufeinanderfolgende Stadien der geotropischen Krümmung einer im Halbdunkel erwachsenen Keimpflanze. Diese bei 1 horizontal gelegt, bei 16 wieder völlig aufgerichtet. Für die Zwischenstadien vgl. den Text. Schematisiert. Nach NOLL.
Der tatsächliche Verlauf der geotropischen Krümmung eines Stengels wird durchFig. 279 dargestellt; sie zeigt, daß dieser Vorgang ein recht komplizierter ist. Eine im Halbdunkel erwachsene Pflanze wird in Nr. 1 horizontal gelegt. Ihr Wachstum ist dicht hinter den Keimblättern am lebhaftesten; deshalb tritt an dieser Stelle die erste geotropische Krümmung auf (Nr. 2, 3). Allmählich greift dann die Krümmung immer weiter basal um sich, geht also immer mehr auf die langsamer wachsenden Teile über. An der Grenze der Wachstumszone macht sie dann halt. Durch die Krümmung der Basalstücke werden (Nr. 7, 8) die Apikalstücke über die Vertikallinie hinausgeführt, es tritt eine „Überkrümmung“ ein. Eine solche muß sich aber auch schon deshalb ergeben, weil jede geotropische Reizung nicht mit dem Moment des Einrückens in die Ruhelage aufhört, sondern noch lange nachwirkt. — Die Überkrümmung muß aber aus einem doppelten Grunde wieder verschwinden (Nr. 13–16). Einmal muß in dem übergekrümmten Teil eine neue, der bisherigen entgegengesetzte geotropische Krümmung ausgelöst werden; außerdem aber kombiniert sich mit dieser ein Bestreben, das man Autotropismus nennt (S. 315 ).
In einzelnen Fällen sind negativ geotropische Krümmungen auch an „ausgewachsenen“[259] Sprossen möglich, d. h. an solchen, die ohne einen geotropischen Reiz kein Längenwachstum mehr zeigen. So wird an verholzten Zweigen und Stämmen, die aus der Ruhelage gekommen sind, durch einen geotropischen Reiz das Kambium der Unterseite zu einem Längenwachstum veranlaßt, das dann zu einer Aufrichtung des Organs führt. Diese erfolgt um so langsamer und unvollkommener, je größer der Widerstand des passiv zu krümmenden Teils ist. Auch die sog. Knoten der Grashalme, die in Wirklichkeit Blattpolster (Fig. 138 ) sind, werden durch geotropischen Reiz zu neuem Wachstum angeregt. Erfolgt dieser Reiz allseitig, dreht man also den Grasknoten um seine horizontal gelegte Längsachse auf dem Klinostaten, so fangen alle Parenchymzellen gleichmäßig an, sich zu verlängern; wird aber der Knoten einfach horizontal gelegt, so beschränkt sich das Wachstum auf die Unterseite, während die Oberseite passiv komprimiert wird (Fig. 280 ). Durch solche Krümmungen in einem oder in mehreren Knoten werden die durch Wind oder Regen gelagerten Grashalme wieder aufgerichtet.
Positiver Geotropismus wird vornehmlich bei Pfahlwurzeln, vielen Luftwurzeln und den Keimsprossen mancher Liliaceen sowie den Rhizomen von Yucca beobachtet. Diese Organe erreichen die senkrechte Richtung nach abwärts aus jeder anderen Stellung und behalten sie dauernd bei. Die positiv-geotropischen Bewegungen werden ebenso wie die negativ-geotropischen durch aktives Wachstum ausgeführt. Die Wurzel sinkt also nicht etwa dem Gewichte ihrer Spitze folgend passiv in den Boden, sondern sie vermag einen das eigene Gewicht weit übertreffenden Gegendruck zu überwinden, kann also z. B. in das spezifisch viel schwerere Quecksilber eindringen. Bei der Krümmung wird das Wachstum auf der Oberseite gefördert, auf der Unterseite gemindert, während die Mittellinie mit unveränderter Geschwindigkeit weiter wächst[260].Fig. 281 stellt den Verlauf der geotropischen Krümmung an der Wurzel dar.
Plagiogeotropisch sind viele Seitenzweige und Seitenwurzeln erster Ordnung. Diese Organe sind in der Ruhelage, wenn ihre Längsachse einen bestimmten Winkel mit der Lotrichtung bildet. Sehr häufig wird übrigens die natürliche schiefe Stellung von Pflanzenteilen nicht durch Geotropismus allein bewirkt. — Ein besonderer Fall von Plagiogeotropismus liegt in der horizontalen Ruhelage von Organen vor. Es sind besonders Rhizome und Stolonen, die solchen Transversalgeotropismus ( Diageotropismus ) zeigen und die aus jeder anderen Stellung mit der fortwachsenden Spitze immer wieder in die wagerechte Richtung zurückkehren, vorausgesetzt, daß sie sich in der richtigen Tiefenlage befinden. Ist das nicht der Fall, so wird zunächst durch aufwärts oder abwärts gerichtete Bewegungen diese erstrebt, und dann erst folgt horizontales Wachstum. Seitenzweige und Seitenwurzeln höherer Ordnung sind oft gar nicht geotropisch und stehen nach allen Seiten vom Mutterorgan ab. Fig. 280. Geotropische Aufrichtung eines Grasblattpolsters. 1 Der vorher aufrechte Halm horizontal gelegt. 2 Die Unterseite u des Polsters stark verlängert, die Oberseite o unverlängert (sogar etwas verkürzt). Die dadurch bedingte Krümmung hat das jüngere Halmstück um etwa 75° emporgerichtet. Nach NOLL. Fig. 281. Geotropische Krümmung einer Wurzel (Keimwurzel von Vicia Faba). I Die vorher senkrecht abwärts gewachsene Wurzel wagerecht gelegt und mit Tuschemarken versehen. II Dieselbe Wurzel nach 7 Stunden. III Dieselbe Wurzel nach 23 Stunden, wieder senkrecht abwärts gerichtet. Z Ein fester Index. Nach SACHS. Eine besondere Art der geotropischen Orientierung tritt bei dorsiventralen Organen (Laubblättern, zygomorphen Blüten,S. 62 ) auf. Alle diese Organe bilden, ebenso wie die radiären plagiotropen, einen bestimmten Winkel mit der Lotlinie, sind aber nur dann in der Ruhelage, wenn auch die Dorsalseite nach oben, die Ventralseite nach unten schaut, während es bei radiären Organen nicht darauf ankommt, welche Flanke gerade oben liegt, wenn nur die Organ-Achse die richtige Neigung hat. Bei der Orientierung dorsiventraler Organe reichen dementsprechend einfache Krümmungen häufig nicht aus, sondern es kommt zu Torsionen.
Die Drehung der Fruchtknoten vieler Orchideen, der Blüten von Lobeliaceen, der Blattstiele an allen hängenden oder schräg gestellten Zweigen, wie auch die Umdrehung der Blätter der Alstroemerien und des Allium ursinum sind bekannte Beispiele für regelmäßig auftretende Orientierungstorsionen.
Unter den dorsiventralen Organen verdienen die mit Gelenkpolstern versehenen Laubblätter wieder besonders hervorgehoben zu werden, weil sie auch im ausgewachsenen Zustande durch geotropische Variations bewegungen ihre Lage verändern können.
Fig. 282. I Linkswindender Sproß von Pharbitis. II Rechtswindender Sproß von Myrsiphyllum asparagoides. Nach NOLL.
Die Schlingpflanzen[261]. Die Schlingpflanzen, die in den verschiedensten Pflanzenfamilien auftreten, besitzen Sprosse, die sich nicht aus eigener Kraft zu halten vermögen, aber dennoch aufwärts wachsen. Die Stengel und Stämme anderer Pflanzen, die sich mit Aufwand großer Mengen von assimilierter Substanz (Holz, Sklerenchym) zu aufrechtem Wuchs gefestigt haben, werden von den Schlingpflanzen benutzt, um an ihnen die eigenen Assimilationsorgane in freier Luft und in vollem Licht auszubreiten. Die Ausnutzung fremder Assimilationsgerüste haben die Schlingpflanzen mit anderen Kletterpflanzen, wie den Rankenpflanzen und Wurzelkletterern, gemein. Sie erreichen ihr Ziel aber nicht durch die Ausbildung seitlicher Haftorgane, sondern durch schlangenartiges Winden ihrer Hauptachsen an den Stützen hinauf. Die ersten aus dem Samen oder aus unterirdischen Reservestoffbehältern sich entwickelnden Stengelglieder der Schlingpflanzen stehen in der Regel noch aufrecht. Bei weiterem Wachstum krümmt sich das freie Ende aber aktiv seitwärts über und nimmt eine mehr oder weniger schräge oder wagrechte Stellung an. Zugleich beginnt der so geneigte Gipfel wie ein Uhrzeiger sich im Kreise zu drehen, vgl.S. 297. Diese Bewegung dauert von dem Moment ihres Entstehens an so lange, als der betreffende Sproß im Wachstum verbleibt, und sie behält in der Regel eine bestimmte Richtung dauernd bei; bei der Mehrzahl der Windepflanzen erfolgt die kreisende Bewegung, von oben her gesehen, in der Richtung entgegengesetzt der Uhrzeigerbewegung (nach links, wie man gewöhnlich zu sagen pflegt); in der Richtung des Uhrzeigers, also nach rechts, kreist z. B. der Hopfen und das Geißblatt; verschiedene Winderichtung bei verschiedenen Individuen und selbst Wechsel der Richtung beim Einzelindividuum hat man z. B. bei Polygonum Convolvulus und Loasa lateritia beobachtet. Die linkskreisenden Pflanzen winden auch links (Fig. 282 I ), d. h. die „Wendeltreppe“, die sie bilden, steigt (von außen gesehen) von links unten nach rechts oben, von oben gesehen entgegen dem Uhrzeiger; die rechtskreisenden Pflanzen winden auch rechts (Fig. 282 II ). Es besteht also eine enge Beziehung zwischen kreisender Bewegung und Winden.
Mit dem Beginn der kreisenden Bewegung ist noch nicht ohne weiteres eine Windebewegung gegeben; diese beginnt erst dann, wenn wir dem Sproß eine mehr oder minder lotrechte, nicht zu dicke Stütze bieten. Eine solche wird dann in lockeren und anfangs sehr flachen Schraubenlinien umwunden, die sich erst allmählich steiler aufrichten. Die Aufrichtung erfolgt durch negativen Geotropismus und geht bei nachträglicher Entfernung der Stütze — unter sonst geeigneten Umständen — in eine völlige Geradestreckung der Schraubenwindung über, wobei der Stengel dann gedreht erscheint; wird die Stütze nicht entfernt, so tritt nur ein Engerwerden der Windungen und demnach ein Druck auf die Stütze ein. Durch kreisende Bewegung und negativen Geotropismus kommt also die Windebewegung zustande. Die Stütze spielt insofern eine Rolle, als sie die sonst unvermeidliche Geradestreckung unmöglich macht. Sie muß mehr oder minder lotrecht stehen, weil sie sonst von dem überhängenden Gipfel gar nicht dauernd erfaßt werden kann.