Mit welcher Genauigkeit dies bei einzelnen Pflanzen geschieht, zeigt ein Versuch mit dem kleinen Pilze Pilobolus crystallinus. Seine Sporangienträger kommen aus feucht gehaltenem Pferde- und Kuhmist nach kurzer Zeit zahlreich hervor; sie sind positiv phototropisch und richten alle das schwarze Sporangium der Lichtquelle zu. Zur Zeit der Reife wird das Sporenköpfchen mit großer Gewalt geradeaus fortgeschleudert. Hat man nun das Licht nur durch ein kleines verglastes Rundfenster seitlich in die Versuchskammer einfallen lassen, so findet man die klebrigen Sporangien alle dicht um das Zentrum der kleinen Lichtscheibe angeschossen, ein Zeichen, daß die Sporangienträger genau dorthin gerichtet waren (Fig. 285 ).

Es ist anzunehmen, daß bei gleichzeitigem Einfall zweier oder mehrerer Strahlenbüschel verschiedener Richtung und Stärke das Resultantengesetz gilt (vgl.S. 305 ).

Fig. 285. Pilobolus crystallinus ( P ), seine Sporangien nach der Lichtscheibe abschießend. G Glasscheibe. B Blechschieber mit rundem Fenster F. M Kulturkasten mit Pferdemist gefüllt. Vgl. den Text. Nach NOLL.

Die positiv phototropischen Krümmungen kommen dadurch zustande, daß die dem Lichte zugewandte Seite langsamer, die vom Lichte abgewandte Seite dagegen stärker wächst als bei allseitiger Beleuchtung. Beim negativen Phototropismus besteht die umgekehrte Wachstumsverteilung. Im allgemeinen treten Krümmungen nur in der Strecke auf, die noch im Wachsen begriffen ist, und der Ort des lebhaftesten Wachstums pflegt zugleich derjenige der schärfsten Krümmungen zu sein.

Der Verlauf der phototropischen Krümmung entspricht vollkommen dem der geotropischen (S. 301 ). — Man hat früher versucht, das geförderte Wachstum der Schattenseite bei positiver phototropischer Reaktion durch beginnendes Etiolement, das gehemmte der Lichtseite durch die verzögernde Wirkung zu erklären, die das Licht auch auf das geradlinige Wachstum der Stengel ausüben sollte (S. 251 ). Diese Vorstellung, die lange Zeit verlassen war, ist neuerdings vor allem durch BLAAUW[266] in modifizierter Form wieder aufgenommen worden. Nach ihm sollen die Veränderungen des Längenwachstums, die man nach einer Änderung der Beleuchtungsstärke beobachtet, wenn sie an verschiedenen Flanken eines orthotropen Organs ungleich sind, direkt zu einer phototropischen Krümmung führen. Diese Veränderungen sind nicht bei allen Pflanzen gleich (vgl.S. 252 ) und bestehen bald in einer primären Wachstums förderung, bald in einer Hemmung. So sucht BLAAUW, indem er ferner auch die verschiedene Durchsichtigkeit der Organe und die Lichtbrechung im Innern berücksichtigt, die bald positive, bald negative phototropische Reaktion oder auch das Ausbleiben jeglichen Phototropismus verständlich zu machen. Es muß anerkannt werden, daß in neuerer Zeit immer mehr ein weitgehender Parallelismus zwischen der Lichtwachstumsreaktion und dem Phototropismus festgestellt werden konnte. Daneben muß aber auch heute noch betont werden, daß manche Lücken in der Beweisführung der BLAAUWschen Theorie bestehen und daß diese bei der Übertragung auf andere Reizerscheinungen (Geotropismus und noch mehr Haptotropismus) großen Schwierigkeiten begegnet.

In einzelnen Fällen hat man[267] auch an Organen, deren Längenwachstum abgeschlossen ist, noch phototropische Krümmungen festgestellt. Dies trifft einmal für mehrjährige Bäume zu, bei denen wahrscheinlich das Kambium eine große Bedeutung für die beobachteten Krümmungen hat, andererseits finden sie sich auch an Knoten, wie z. B. denen der Gramineen und Commelinaceen, wo durch Licht allein oder nur bei gleichzeitiger Schwereeinwirkung das Längenwachstum wieder aufgenommen wird.

Hat sich ein Organ durch eine phototropische Krümmung in die Richtung des Lichtes eingestellt, so ist es auch allseitig gleich stark beleuchtet und befindet sich in seiner phototropischen Ruhelage. Sorgt man, ohne den Lichteinfall oder die Lichtintensität zu ändern, dafür, daß die Pflanze durch ein Uhrwerk ( Klinostat ) in dauernde Rotation um ihre vertikale Längsachse versetzt wird, so heben sich die auf verschiedene Seiten orthotroper Organe nacheinander einwirkenden phototropischen Reize auf; es bleiben also die phototropischen Krümmungen aus.

SACHS hat seiner Zeit die Vorstellung entwickelt, daß beim Phototropismus — ähnlich wie beim Geotropismus die Richtung der Schwerkraft — die Licht richtung maßgebend sei. Eine große Anzahl von Tatsachen spricht heute dafür, daß die phototropische Reizung vielmehr durch ungleiche Helligkeit an verschiedenen Stellen des phototropisch-empfindlichen Organs zustande kommt[268].

Wenn auch in einzelligen Schläuchen von einer bestimmten Lichtrichtung gesprochen werden kann, so dürfte das doch für vielzellige Gewebe, mit ungleich brechendem Zellinhalt und reichlichen lichtführenden Interzellularen bestimmt nicht möglich sein. Es lassen sich aber auch experimentell Bedingungen schaffen, wo zweifellos die phototropische Krümmung nicht in der Richtung der Strahlen verläuft. So z. B. wenn man Avena-Koleoptilen halbseitig von oben beleuchtet: da tritt die Krümmung senkrecht zu der Strahlenrichtung nach der beleuchteten Seite zu auf: oder wenn man Avena-Koleoptilen von innen her beleuchtet: die Krümmung erfolgt genau in entgegengesetzter Richtung wie die Strahlen; es ist also gleichgültig, ob die helle Hälfte der Koleoptile das Licht von außen oder von innen erhält.

Phototropische Krümmungen können im Licht aller Wellenlängen, die das sichtbare Spektrum bilden, ausgeführt werden. Bei gleicher Energie wirken aber die blauen und violetten Strahlen ungleich stärker phototropisch, wie sie ja auch phototaktisch sich wirksamer erweisen.