Im allgemeinen können wir auf geotropische Reizbarkeit eines Organs nur aus der eintretenden Krümmung schließen. In einzelnen Fällen aber läßt sich auch ohne solche Reaktion eine geotropische Reizbarkeit erkennen. So ist z. B. bei manchen Graskeimlingen, die ein wohl ausgebildetes Internodium unterhalb des Scheidenblattes besitzen (Paniceen), das Scheidenblatt in einem gewissen Moment ausgewachsen und deshalb nicht mehr geotropisch krümmungsfähig; daß es aber noch geotropisch reizbar ist, erkennt man daraus, daß nach einseitiger Einwirkung der Schwerkraft auf diese Scheide das Internodium sich krümmt, obwohl es selbst nicht geotropisch reizbar ist. Der geotropische Reiz muß ihm also von der Scheide her zugeleitet worden sein. Bei anderen Graskeimlingen (Poaeoideen) hat man bemerkt, daß die Spitze des Scheidenblattes viel stärker geotropisch reizbar ist als die Zone maximalen Wachstums, und eine ähnliche Abnahme der geotropischen Sensibilität von der Spitze nach der Basis zu liegt auch bei Wurzeln vor. Man kann nun mit Hilfe eines besonderen Apparats bei solchen Objekten Spitze und Wachstumszone durch Fliehkräfte entgegengesetzt geotropisch reizen und bemerkt dann, daß die Wachstumszone sich im Sinne der gereizten Spitze krümmt. Es findet also eine Reizleitung von der Spitze basalwärts statt, und der geleitete Reiz überwindet den in der Wachstumszone direkt induzierten vollkommen. — Es lassen sich also in solchen Fällen deutlich drei Prozesse trennen: Reizaufnahme (Perzeption), Reizleitung und Reizreaktion. Ein Organ kann perzipieren, ohne selbst zu reagieren, und umgekehrt kann auch ein Organ, das selbst nicht perzipiert, geotropisch reagieren. Wir haben allen Grund anzunehmen, daß diese drei Teile des Reizprozesses auch da unterschieden werden müssen, wo sie nicht so scharf sich trennen lassen.

Wir entnehmen schon diesen Ausführungen, daß der Grad der geotropischen Krümmung und die Geschwindigkeit, mit der sie eintritt, keineswegs ein Maßstab für die Größe der Reizung ist, da sie weitgehend von der Wachstumsbefähigung abhängen. Die Größe der geotropischen Reizung hängt zunächst einmal von der spezifischen Empfindlichkeit der gereizten Organe, außerdem aber auch von der „Reizmenge“ ab, die es getroffen hat. Die Größe der Reizung eines gegebenen Organs ist direkt der „Reizmenge“ proportional. Unter Reizmenge aber versteht man das Produkt aus der Intensität des Reizes und der Dauer seiner Einwirkung. Es ist also für den Erfolg gleichgültig, ob wir eine hohe Fliehkraft für kurze Zeit oder eine geringe entsprechend längere Zeit einwirken lassen.

Diese Gesetzmäßigkeit, das „ Reizmengengesetz “[264], das enge Beziehungen zu den früher erwähnten Gesetzmäßigkeiten, dem Sinusgesetz und dem Resultantengesetz aufweist, gilt freilich nur innerhalb gewisser Grenzen. Es hat sich gezeigt, daß ein orthotropes Organ, horizontal gelegt, unter konstanten Außenbedingungen nach einer ganz bestimmten Zeit anfängt, sich zu krümmen. Die Zeit, die vom Beginn der Reizung bis zum Beginn der Reaktion verstreicht, nennt man die Reaktionszeit. Es ist aber zur Erzielung einer geotropischen Reaktion nicht nötig, ein Organ während der ganzen Reaktionszeit zu reizen. Es genügt vielmehr eine sehr viel kürzere Zeit, um an dem weiterhin senkrecht gestellten Organ durch Nachwirkung eine geotropische Krümmung zu erhalten. Die minimale Reizzeit, nach der noch eine gerade sichtbare Krümmung erfolgt, nennt man „ Präsentations zeit“. Nur für Reize, die solange oder etwas länger währen als die Präsentationszeit, gilt zunächst einmal das Reizmengengesetz; die Präsentationszeit ist also umgekehrt proportional der Reizintensität. Größere Reizmengen haben keine entsprechende Steigerung der geotropischen Krümmung zur Folge.

Wie andere Eigenschaften der Pflanze ist auch die Reaktionszeit und die Präsentationszeit weitgehenden Schwankungen unterworfen, so daß man bei statistischer Untersuchung typische Variationskurven erhält. TRÖNDLE fand als mittlere Reaktionszeit für Hafersprosse 32 Min., für Kressewurzeln 21 Min. Einzelne Haferkeime reagierten schon nach weniger als 14 Min., andere erst nach mehr als 49 Min. Bei den meisten Pflanzen sind die Reaktionszeiten aber größer. Die Präsentationszeiten sind häufig zu 2, 3 bis 10 und mehr Min. gefunden worden.

Reize unter Präsentationsdauer bleiben indes nicht wirkungslos. Bei Wiederholung summieren sie sich und führen schließlich zu einer Krümmung, wenn die Summe der Einzelreize die Präsentationszeit erreicht, und wenn die Pausen zwischen den Einzelreizen nicht zu groß waren. Eine untere Grenze für die Dauer des Einzelreizes konnte bis jetzt nicht gefunden werden.

2. Phototropismus[Heliotropismus][265].

Phototropische Krümmungen kommen bei einseitigem Lichteinfall zustande. Man beobachtet sie leicht bei Pflanzen, die am Waldrande wachsen oder die im Zimmer gehalten werden. Die Stengel der im Zimmer aufgestellten Pflanzen wachsen nicht wie im Freien bei allseitiger Beleuchtung aufrecht, sondern sind dem nächsten Fenster zugeneigt; sie sind orthotrop und positiv phototropisch. Im Gegensatz zu diesen Teilen findet man ihre Blattflächen senkrecht zu den einfallenden Lichtstrahlen gestellt, um möglichst viel Licht aufzufangen; die Blattflächen sind transversal phototropisch ( lichtfangend ). Weniger häufig hat man Gelegenheit, negativen Phototropismus, also ein Wegwachsen von der Lichtquelle, zu sehen. — InFig. 284 sind die verschiedenartigen phototropischen Krümmungen, die an einer Wasserkultur des weißen Senfes bei einseitiger Beleuchtung eintreten, dargestellt.

Fig. 284. Keimling des weißen Senfs in Wasserkultur, ursprünglich allseitig, dann einseitig beleuchtet. Stengel dem Lichte zugekehrt, die Wurzel abgewendet, die Blattflächen senkrecht zum Lichte ausgebreitet. K K Korkplatte (Schwimmer). Nach NOLL.

Phototropismus ist im Pflanzenreich weit verbreitet. Am häufigsten kommt der positive Phototropismus zur Beobachtung, er bildet die Regel bei den oberirdischen Vegetationsachsen. Viel seltener zeigt sich der negative Phototropismus, z. B. bei Luftwurzeln, zumal Kletterwurzeln (Ficus stipulata, Begonia scandens u. a.), beim hypokotylen Stammglied der keimenden Mistel, bei manchen, aber nicht allen Erdwurzeln (Sinapis, Helianthus), Ranken (zumal den mit Haftscheiben versehenen), am Stengel einzelner Kletterpflanzen. Haftwurzeln und Haftranken von Kletterpflanzen haben, wie auch die Keimwurzel der Mistel, von ihrem negativen Phototropismus den Vorteil, der dunklen Unterlage zugeführt zu werden. Wie später (S. 310 ) zu zeigen sein wird, kann die phototropische Reaktionsweise abgeändert werden, also z. B. ein sonst positiv reagierendes Organ zu negativen Krümmungen veranlaßt werden.

Zur genaueren Beobachtung der phototropischen Erscheinungen ist es notwendig, das einseitig einfallende zerstreute Tageslicht durch eine enger begrenzte Lichtquelle zu ersetzen. Dann zeigt sich vor allem, daß, wie bei den topophototaktischen Bewegungen, die Richtung des einfallenden Lichtes maßgebend ist für die phototropische Ruhelage. Jede Änderung der Strahlenrichtung hat auch eine Stellungsänderung der phototropischen Organe zur Folge. Das Gipfelende mancher positiv phototropischen Organe findet man völlig in der Richtung der Strahlen eingestellt.