für 5 gestossen sind. Diese Schreibung steht gut im Einklänge mit dem, was Jevons über die zahlenbildende Abstraction sagt; die obern Striche deuten nämlich an, dass eine Verschiedenheit da ist, ohne jedoch ihre Art anzugeben. Aber das blosse Bestehen der Verschiedenheit genügt schon, wie wir gesehen haben, um bei der Jevons'schen Auffassung verschiedene Einsen, Zweien, Dreien hervorzubringen, was mit dem Bestande der Arithmetik durchaus unverträglich ist.

Lösung der Schwierigkeit.

§ 45. Ueberblicken wir nun das bisher von uns Festgestellte und die noch unbeantwortet gebliebenen Fragen!

Die Zahl ist nicht in der Weise wie Farbe, Gewicht, Härte von den Dingen abstrahirt, ist nicht in dem Sinne wie diese Eigenschaft der Dinge. Es blieb noch die Frage, von wem durch eine Zahlangabe etwas ausgesagt werde.

Die Zahl ist nichts Physikalisches, aber auch nichts Subjectives, keine Vorstellung.

Die Zahl entsteht nicht durch Hinzufügung von Ding zu Ding. Auch die Namengebung nach jeder Hinzufügung ändert darin nichts.

Die Ausdrücke »Vielheit,« »Menge,« »Mehrheit« sind wegen ihrer Unbestimmtheit ungeeignet, zur Erklärung der Zahl zu dienen.

In Bezug auf Eins und Einheit blieb die Frage, wie die Willkühr der Auffassung zu beschränken sei, die jeden Unterschied zwischen Einem und Vielen zu verwischen schien.

Die Abgegrenztheit, die Ungetheiltheit, die Unzerlegbarkeit sind keine brauchbaren Merkmale für das, was wir durch das Wort »Ein« ausdrücken.

Wenn man die zu zählenden Dinge Einheiten nennt, so ist die unbedingte Behauptung, dass die Einheiten gleich seien, falsch. Dass sie in gewisser Hinsicht gleich sind, ist zwar richtig aber werthlos. Die Verschiedenheit der zu zählenden Dinge ist sogar nothwendig, wenn die Zahl grösser als 1 werden soll.