sei gleichbedeutend mit

»die Richtung der Gerade a ist gleich der Richtung
der Gerade b«.

Diese Erklärung weicht insofern von dem Gewohnten ab, als sie scheinbar die schon bekannte Beziehung der Gleichheit bestimmt, während sie in Wahrheit den Ausdruck »die Richtung der Gerade a« einführen soll, der nur nebensächlich vorkommt. Daraus entspringt ein zweites Bedenken, ob wir nicht durch eine solche Festsetzung in Widersprüche mit den bekannten Gesetzen der Gleichheit verwickelt werden könnten. Welches sind diese? Sie werden als analytische Wahrheiten aus dem Begriffe selbst entwickelt werden können. Nun definirt Leibniz[85]:

»Eadem sunt, quorum unum potest substitui alteri salva veritate«.

Diese Erklärung eigne ich mir für die Gleichheit an. Ob man wie Leibniz »dasselbe« sagt oder »gleich«, ist unerheblich. »Dasselbe« scheint zwar eine vollkommene Uebereinstimmung, »gleich« nur eine in dieser oder jener Hinsicht auszudrücken; man kann aber eine solche Redeweise annehmen, dass dieser Unterschied wegfällt, indem man z. B. statt »die Strecken sind in der Länge gleich« sagt »die Länge der Strecken ist gleich« oder »dieselbe,« statt »die Flächen sind in der Farbe gleich« »die Farbe der Flächen ist gleich«. Und so haben wir das Wort oben in den Beispielen gebraucht. In der allgemeinen Ersetzbarkeit sind nun in der That alle Gesetze der Gleichheit enthalten.

Um unsern Definitionsversuch der Richtung einer Gerade zu rechtfertigen, müssten wir also zeigen, dass man

die Richtung von a

überall durch

die Richtung von b

ersetzen könne, wenn die Gerade a der Gerade b parallel ist. Dies wird dadurch vereinfacht, dass man zunächst von der Richtung einer Gerade keine andere Aussage kennt als die Uebereinstimmung mit der Richtung einer andern Gerade. Wir brauchten also nur die Ersetzbarkeit in einer solchen Gleichheit nachzuweisen oder in Inhalten, welche solche Gleichheiten als Bestandtheile[86] enthalten würden. Alle andern Aussagen von Richtungen müssten erst erklärt werden und für diese Definitionen können wir die Regel aufstellen, dass die Ersetzbarkeit der Richtung einer Gerade durch die einer ihr parallelen gewahrt bleiben muss.