»es giebt einen Begriff der Art, dass n die Anzahl ist, welche ihm zukommt«.

So ist der Begriff der Anzahl erklärt, scheinbar freilich durch sich selbst, aber dennoch ohne Fehler, weil »die Anzahl, welche dem Begriffe F zukommt« schon erklärt ist.

§ 73. Wir wollen nun zunächst zeigen, dass die Anzahl, welche dem Begriffe F zukommt, gleich der Anzahl ist, welche dem Begriffe G zukommt, wenn der Begriff F dem Begriffe G gleichzahlig ist. Dies klingt freilich wie eine Tautologie, ist es aber nicht, da die Bedeutung des Wortes »gleichzahlig« nicht aus der Zusammensetzung, sondern aus der eben gegebenen Erklärung hervorgeht.

Nach unserer Definition ist zu zeigen, dass der Umfang des Begriffes »gleichzahlig dem Begriffe F« derselbe ist wie der Umfang des Begriffes »gleichzahlig dem Begriffe G«, wenn der Begriff F gleichzahlig dem Begriffe G ist. Mit andern Worten: es muss bewiesen werden, dass unter dieser Voraussetzung die Sätze allgemein gelten:

wenn der Begriff H gleichzahlig dem Begriffe F ist, so ist er auch gleichzahlig dem Begriffe G;

und

wenn der Begriff H dem Begriffe G gleichzahlig ist, so ist er auch gleichzahlig dem Begriffe F.

Der erste Satz kommt darauf hinaus, dass es eine Beziehung giebt, welche die unter den Begriff H fallenden Gegenstände den unter den Begriff G fallenden beiderseits eindeutig zuordnet, wenn es eine Beziehung φ giebt, welche die unter den Begriff F fallenden Gegenstände den unter den Begriff G fallenden beiderseits eindeutig zuordnet, und wenn es eine Beziehung ψ giebt, welche die unter den Begriff H fallenden Gegenstände den unter den Begriff F fallenden beiderseits eindeutig zuordnet. Folgende Anordnung der Buchstaben wird dies übersichtlicher machen:

H ψ F φ G.