Nach dem, was früher über die Bedeutung dieser Ausdrücke gesagt ist, erfüllt bei unsern Voraussetzungen jede Beziehung diese Bedingungen, also auch die Gleichheit, die obendrein beiderseits eindeutig ist; denn es gelten die beiden oben dafür verlangten Sätze.
Wenn dagegen unter G ein Gegenstand fällt z. B. a, während unter F keiner fällt, so bestehen die beiden Sätze
»a fällt unter G«
und
»kein unter F fallender Gegenstand steht zu a in
der Beziehung φ«
mit einander für jede Beziehung φ; denn der erste ist nach der ersten Voraussetzung richtig und der zweite nach der zweiten. Wenn es nämlich keinen unter F fallenden Gegenstand giebt, so giebt es auch keinen solchen, der in irgendeiner Beziehung zu a stände. Es giebt also keine Beziehung, welche nach unserer Erklärung die unter F den unter G fallenden Gegenständen zuordnete, und demnach sind die Begriffe F und G ungleichzahlig.
§ 76. Ich will nun die Beziehung erklären, in der je zwei benachbarte Glieder der natürlichen Zahlenreihe zu einander stehen. Der Satz:
»es giebt einen Begriff F und einen unter ihn fallenden Gegenstand x der Art, dass die Anzahl, welche dem Begriffe F zukommt, n ist, und dass die Anzahl, welche dem Begriffe »»unter F fallend aber nicht gleich x«« zukommt, m ist«
sei gleichbedeutend mit
»n folgt in der natürlichen Zahlenreihe unmittelbar auf m.«
Ich vermeide den Ausdruck »n ist die auf m nächstfolgende Anzahl,« weil zur Rechtfertigung des bestimmten Artikels erst zwei Sätze bewiesen werden müssten[92]. Aus demselben Grunde sage ich hier noch nicht »n = m + 1«; denn auch durch das Gleichheitszeichen wird (m + 1) als Gegenstand bezeichnet.
§ 77. Um nun auf die Zahl 1 zu kommen, müssen wir zunächst zeigen, dass es etwas giebt, was in der natürlichen Zahlenreihe unmittelbar auf 0 folgt.