»Sie ist die zusammengesetzte Vorstellung von verschiedenartigen Gruppen unter einander gleicher Elemente[120]«, so scheint er damit die Einmischung von Fremdartigem vermieden zu haben; aber er scheint es auch nur infolge der Unbestimmtheit des Ausdrucks. Man erhält gar keine Antwort darauf, was 1 + i eigentlich bedeute: die Vorstellung eines Apfels und einer Birne oder die von Zahnweh und Podagra? Beide zugleich kann es doch nicht bedeuten, weil dann 1 + i nicht immer gleich 1 + i wäre. Man wird sagen: das kommt auf die besondere Festsetzung an. Nun, dann haben wir auch in Kossak's Satze noch gar keine Definition der complexen Zahl, sondern nur eine allgemeine Anleitung dazu. Wir brauchen aber mehr; wir müssen bestimmt wissen, was »i« bedeutet, und wenn wir nun jener Anleitung folgend sagen wollten: die Vorstellung einer Birne, so würden wir wieder etwas Fremdartiges in die Arithmetik einführen.

Das, was man die geometrische Darstellung complexer Zahlen zu nennen pflegt, hat wenigstens den Vorzug vor den bisher betrachteten Versuchen, dass dabei 1 und i nicht ganz ohne Zusammenhang und ungleichartig erscheinen sondern dass die Strecke, welche man als Darstellung von i betrachtet, in einer gesetzmässigen Beziehung zu der Strecke steht, durch welche 1 dargestellt wird. Uebrigens ist es genau genommen nicht richtig, dass hierbei 1 eine gewisse Strecke, i eine zu ihr senkrechte von gleicher Länge bedeute, sondern »1« bedeutet überall dasselbe. Eine complexe Zahl giebt hier an, wie die Strecke, welche als ihre Darstellung gilt, aus einer gegebenen Strecke (Einheitsstrecke) durch Vervielfältigung, Theilung und Drehung[121] hervorgeht. Aber auch hiernach erscheint jeder Lehrsatz, dessen Beweis sich auf die Existenz einer complexen Zahl stützen muss, von der geometrischen Anschauung abhängig und also synthetisch.

§ 104. Wodurch sollen uns denn nun die Brüche, die Irrationalzahlen und die complexen Zahlen gegeben werden? Wenn wir die Anschauung zu Hilfe nehmen, so führen wir etwas Fremdartiges in die Arithmetik ein; wenn wir aber nur den Begriff einer solchen Zahl durch Merkmale bestimmen, wenn wir nur verlangen, dass die Zahl gewisse Eigenschaften habe, so bürgt nichts dafür, dass auch etwas unter den Begriff falle und unsern Anforderungen entspreche, und doch müssen sich grade hierauf Beweise stützen.

Nun, wie ist es denn bei der Anzahl? Dürfen wir wirklich von 1000 (10001000) nicht reden, bevor uns nicht soviele Gegenstände in der Anschauung gegeben sind? Ist es so lange ein leeres Zeichen? Nein! es hat einen ganz bestimmten Sinn, obwohl es psychologisch schon in Anbetracht der Kürze unseres Lebens unmöglich ist, uns soviele Gegenstände vor das Bewusstsein zu führen[122]; aber trotzdem ist 1000 (10001000) ein Gegenstand, dessen Eigenschaften wir erkennen können, obgleich er nicht anschaulich ist. Man überzeugt sich davon, indem man bei der Einführung des Zeichens an für die Potenz zeigt, dass immer eine und nur eine positive ganze Zahl dadurch ausgedrückt wird, wenn a und n positive ganze Zahlen sind. Wie dies geschehen kann, würde hier zu weit führen, im Einzelnen darzulegen. Die Weise, wie wir im § 74 die Null, in § 77 die Eins, in § 84 die unendliche Anzahl ∞₁ erklärt haben, und die Andeutung des Beweises, dass auf jede endliche Anzahl in der natürlichen Zahlenreihe eine Anzahl unmittelbar folgt (§§ 82 u. 83), werden den Weg im Allgemeinen erkennen lassen.

Es wird zuletzt auch bei der Definition der Brüche, complexen Zahlen u. s. w. Alles darauf ankommen, einen beurtheilbaren Inhalt aufzusuchen, der in eine Gleichung verwandelt werden kann, deren Seiten dann eben die neuen Zahlen sind. Mit andern Worten: wir müssen den Sinn eines Wiedererkennungsurtheils für solche Zahlen festsetzen. Dabei sind die Bedenken zu beachten, die wir (§§ 63–68) in Betreff einer solchen Umwandlung erörtert haben. Wenn wir ebenso wie dort verfahren, so werden uns die neuen Zahlen als Umfänge von Begriffen gegeben.

§ 105. Aus dieser Auffassung der Zahlen[123] erklärt sich, wie mir scheint, leicht der Reiz, den die Beschäftigung mit der Arithmetik und Analysis ausübt. Man könnte wohl mit Abänderung eines bekannten Satzes sagen: der eigentliche Gegenstand der Vernunft ist die Vernunft. Wir beschäftigen uns in der Arithmetik mit Gegenständen, die uns nicht als etwas Fremdes von aussen durch Vermittelung der Sinne bekannt werden, sondern die unmittelbar der Vernunft gegeben sind, welche sie als ihr Eigenstes völlig durchschauen kann[124].

Und doch, oder vielmehr grade daher sind diese Gegenstände nicht subjective Hirngespinnste. Es giebt nichts Objectiveres als die arithmetischen Gesetze.

§ 106. Werfen wir noch einen kurzen Rückblick auf den Gang unserer Untersuchung! Nachdem wir festgestellt hatten, dass die Zahl weder ein Haufe von Dingen noch eine Eigenschaft eines solchen, dass sie aber auch nicht subjectives Erzeugniss seelischer Vorgänge ist; sondern dass die Zahlangabe von einem Begriffe etwas Objectives aussage, versuchten wir zunächst die einzelnen Zahlen 0, 1 u. s. w. und das Fortschreiten in der Zahlenreihe zu definiren. Der erste Versuch misslang, weil wir nur jene Aussage von Begriffen, nicht aber die 0, die 1 abgesondert definirt hatten, welche nur Theile von ihr sind. Dies hatte zur Folge, dass wir die Gleichheit von Zahlen nicht beweisen konnten. Es zeigte sich, dass die Zahl, mit der sich die Arithmetik beschäftigt, nicht als ein unselbständiges Attribut, sondern substantivisch gefasst werden muss[125]. Die Zahl erschien so als wiedererkennbarer Gegenstand, wenn auch nicht als physikalischer oder auch nur räumlicher noch als einer, von dem wir uns durch die Einbildungskraft ein Bild entwerfen können. Wir stellten nun den Grundsatz auf, dass die Bedeutung eines Wortes nicht vereinzelt, sondern im Zusammenhange eines Satzes zu erklären sei, durch dessen Befolgung allein, wie ich glaube, die physikalische Auffassung der Zahl vermieden werden kann, ohne in die psychologische zu verfallen. Es giebt nun eine Art von Sätzen, die für jeden Gegenstand einen Sinn haben müssen, das sind die Wiedererkennungsätze, bei den Zahlen Gleichungen genannt. Auch die Zahlangabe, sahen wir, ist als eine Gleichung aufzufassen. Es kam also darauf an, den Sinn einer Zahlengleichung festzustellen, ihn auszudrücken, ohne von den Zahlwörtern oder dem Worte »Zahl« Gebrauch zu machen. Die Möglichkeit die unter einen Begriff F fallenden Gegenstände, den unter einen Begriff G fallenden beiderseits eindeutig zuzuordnen, erkannten wir als Inhalt eines Wiedererkennungsurtheils von Zahlen. Unsere Definition musste also jene Möglichkeit als gleichbedeutend mit einer Zahlengleichung hinstellen. Wir erinnerten an ähnliche Fälle: die Definition der Richtung aus dem Parallelismus, der Gestalt aus der Aehnlichkeit u. s. w.

§ 107. Es erhob sich nun die Frage: wann ist man berechtigt, einen Inhalt als den eines Wiedererkennungsurtheils aufzufassen? Es muss dazu die Bedingung erfüllt sein, dass in jedem Urtheile unbeschadet seiner Wahrheit die linke Seite der versuchsweise angenommenen Gleichung durch die rechte ersetzt werden könne. Nun ist uns, ohne dass weitere Definitionen hinzukommen, zunächst von der linken oder rechten Seite einer solchen Gleichung keine Aussage weiter bekannt als eben die der Gleichheit. Es brauchte also die Ersetzbarkeit nur in einer Gleichung nachgewiesen zu werden.