Denn die Gesamtheit dieser Prinzipien ist unvereinbar mit der Erfahrungstatsache, daß im Erdfeld die träge und die schwere Masse gleich sind. Dabei sind alle diese Prinzipien, mit Ausnahme des ersten, apriori im Kantischen Sinne; das erste aber ist gerade dasjenige Prinzip, welches den in der entsprechenden Zusammenstellung des vorhergehenden Abschnitts dargestellten Widerspruch löst.
Wir haben damit die grundlegenden Gedanken für das Verlassen der euklidischen Raumanschauung aufgedeckt. Ehe wir jedoch diese Darlegung beschließen, müssen wir noch etwas über den speziellen Charakter sagen, den auch der Einsteinsche Raum noch besitzt.
Es ist nicht richtig zu sagen, daß in der Einsteinschen Lehre der euklidische Raum keine Vorzugsstellung mehr inne hätte. Eine Bevorzugung liegt immer noch darin, daß das unendlich kleine Raumgebiet als euklidisch angenommen wird. Riemann nennt diese Eigenschaft: „Ebenheit in den kleinsten Teilen“. Sie drückt sich analytisch in der gemischt quadratischen Form des Linienelements aus; aus dieser folgt, daß stets eine solche Koordinatenwahl möglich ist, daß in einem einzigen Punkt das Linienelement sich gerade als reine Quadratsumme darstellt. Man kann also ein Koordinatensystem immer so wählen, daß es für ein beliebig vorgegebenes Punktgebiet gerade euklidisch wird. Physikalisch bedeutet dies, daß man für ein unendlich kleines Gebiet das Gravitationsfeld immer „wegtransformieren“ kann, wie auch das Feld sonst beschaffen sein möge, daß also kein Wesensunterschied zwischen den durch Transformation erzeugten und den statischen Gravitationsfeldern besteht. Das ist der Inhalt der Einsteinschen Äquivalenzhypothese für die träge und die schwere Masse. Umgekehrt ist auch diese Hypothese der Grund für die quadratische Form des Linienelements, und die Ebenheit in den kleinsten Teilen hat danach ihren physikalischen Grund. Würden die physikalischen Verhältnisse anders liegen, so müßte für das Linienelement ein anderer Differentialausdruck, etwa vom vierten Grade, gewählt werden, und damit würde auch die letzte Vorzugsstellung des euklidischen Raumes verschwinden.
Man kann die Sonderstellung der gemischt quadratischen Form für das Linienelement auch folgendermaßen darstellen. Die die Metrik bestimmenden zehn Funktionen gμν sind nicht absolut festgelegt, sondern hängen von der Koordinatenwahl ab. Allerdings sind sie nicht unabhängig voneinander, und wenn vier von ihnen vorgegeben sind, sind die Koordinaten und auch die anderen sechs Funktionen bestimmt. In dieser Abhängigkeit drückt sich der absolute Charakter der Raumkrümmung aus. Für die metrischen Funktionen gμν gilt also keine Relativität, d. h. Beliebigkeit ihrer Wahl. Wohl aber kann man eine andere Relativität behaupten. Es seien beliebige zehn Zahlen vorgegeben, dann läßt sich ein Koordinatensystem immer so wählen, daß die metrischen Koeffizienten in einem beliebig vorgegebenen Punkt gerade gleich diesen zehn Zahlen werden. (In den anderen Punkten sind sie dann natürlich nicht mehr beliebig.) Man kann diese Eigenschaft „Relativität der metrischen Koeffizienten“ nennen; sie besagt, daß für einen gegebenen Punkt die metrischen Koeffizienten keine absolute Bedeutung haben. Es läßt sich leicht zeigen, daß diese Relativität nur für das gemischt quadratische Linienelement gilt; für andere Formen, z. B. den Differentialausdruck vierten Grades, ist die beliebige Wahl der Zahlen nicht möglich. Mit der Relativität der metrischen Koeffizienten hat also die Einsteinsche Theorie ein weiteres willkürliches Element in die Naturbeschreibung eingeführt; wir heben dies deshalb hervor, weil an diesem Relativitätsprinzip die empirische Grundlage, nämlich die Gleichheit von träger und schwerer Masse, besonders deutlich zu erkennen ist.
IV. Erkenntnis als Zuordnung.
Ehe wir an eine Kritik der von der Relativitätstheorie aufgezeigten Widersprüche gehen, müssen wir eine Theorie des physikalischen Erkenntnisbegriffs entwickeln und versuchen, den Sinn des Apriori zu formulieren.
Es ist das Kennzeichen der modernen Physik, daß sie alle Vorgänge durch mathematische Gleichungen darstellt; aber diese Berührung zweier Wissenschaften darf über deren grundsätzlichen Unterschied nicht hinwegtäuschen. Für den mathematischen Satz bedeutet Wahrheit eine innere Beziehung seiner Glieder, für den physikalischen Satz aber heißt Wahrheit eine Beziehung auf etwas Äußeres, ein bestimmter Zusammenhang mit der Erfahrung. Man drückt diese Tatsache gewöhnlich in der Form aus, daß man dem mathematischen Satz eine absolute Geltung zuschreibt, dem physikalischen aber nur eine wahrscheinliche. Ihren inneren Grund hat diese Eigentümlichkeit in der Verschiedenheit des Objekts der beiden Wissenschaften.
Der mathematische Gegenstand ist durch die Axiome und die Definitionen der Mathematik vollständig definiert. Durch die Definitionen: denn sie geben an, wie sich der Gegenstand zu den bereits vorher definierten Gegenständen in Beziehung setzt; indem seine Unterschiede und Gleichheiten aufgedeckt werden, erhält er selbst erst seinen Sinn und Inhalt als Inbegriff dieser Abgrenzungen. Und durch die Axiome: denn sie geben die Rechenregeln, nach denen die Abgrenzungen zu vollziehen sind. Auch die in den Axiomen auftretenden Grundbegriffe sind erst durch die damit aufgestellten Relationen definiert. Wenn Hilbert[9] unter seine Axiome der Geometrie den Satz aufnimmt: „unter irgend drei Punkten einer Geraden gibt es stets einen und nur einen, der zwischen den beiden andern liegt“, so ist dies ebensowohl eine Definition für die Eigenschaften der Punkte wie für die Natur der Geraden oder wie für die Relation „zwischen“. Zwar ist dieser Satz noch keine erschöpfende Definition. Aber die Definition wird vollständig durch die Gesamtheit der Axiome. Der Hilbertsche Punkt oder die Gerade ist nichts anderes, als etwas, was die in den Axiomen ausgesagten Eigenschaften besitzt. Man könnte genau so gut die Zeichen a, b, c … an Stelle der Wortzeichen Punkt, Gerade, zwischen usw. setzen, die Geometrie würde dadurch nicht geändert. Am deutlichsten drückt sich das in der projektiven Geometrie aus, deren Sätze für die Ebene richtig bleiben, wenn man die Begriffe Punkt und Gerade vertauscht. Ihre axiomatisch definierten Relationen sind für diese beiden Begriffe symmetrisch, und obgleich unsere Anschauung mit beiden Begriffen einen ganz verschiedenen Inhalt verbindet und entsprechend auch die Axiome inhaltlich verschieden auffaßt, drückt sich die begriffliche Symmetrie in der Tatsache aus, daß der durch Vertauschung entstandene Satz ebenfalls richtig ist, auch für unsere Anschauung, obgleich sein anschaulicher Sinn geändert worden ist. Diese eigentümliche Wechselseitigkeit der mathematischen Definition, in der immer ein Begriff den anderen definiert, ohne daß eine Beziehung auf „absolute Definitionen“ nötig wäre, ist von Schlick[10] in der Lehre von den impliziten Definitionen sehr klar ausgeführt worden. Wir müssen diese moderne Art der Definition der alten scholastischen mit ihrer Angabe von Klasse und Merkmal gegenüberstellen.