Von dem schon verbrannten Teile kann ich keinen Dampf erhalten. Wenn ich die Röhre in [Fig. 7] zum obern Teil der Flamme hebe, so wird, sobald der Dampf ausgeschlossen ist, das, was nun in die Röhre geht, nicht mehr brennbar sein; denn es ist ja schon verbrannt! – Wie verbrannt? – In der Mitte der Kerze am Docht befindet sich der brennbare Dampf; außerhalb der Flamme ist die Luft, die wir für das Brennen einer Kerze notwendig finden werden. Zwischen diesen beiden geht ein kräftiger chemischer Prozeß vor sich, bei dem die Luft und der Brennstoff auf einander wirken; und genau zu derselben Zeit, während der wir das Licht erhalten, wird der Dampf zerstört. Wenn Ihr prüft, wo die heißeste Stelle der Flamme ist, so werdet Ihr das merkwürdig eingerichtet finden. Ich nehme z. B. diese Kerze und halte ein Stück Papier dicht über die Flamme: wo ist die größte Hitze dieser Flamme? Ihr seht, daß sie nicht im Innern ist. Sie ist in einem Ringe, genau an dem Orte, von dem ich sagte, daß dort der chemische Prozeß vor sich geht, und trotzdem ich dieses Experiment jetzt nicht mit der wünschenswerten Sorgfalt ausführen kann, wird es immer ein Ring sein, wenn nicht gar zu viel Unruhe herrscht. Das ist ein Experiment, das Ihr gut zu Hause machen könnt. Nehmt einen Papierstreifen, sorgt dafür, daß die Luft im Zimmer ruhig ist, und haltet das Papier gerade über die Mitte der Flamme – doch ich darf nicht sprechen, während ich das Experiment mache – Ihr werdet finden, daß es an zwei Stellen verbrannt, in der Mitte aber nur wenig oder gar nicht angebrannt ist. Habt Ihr nun dieses Experiment ein- oder zweimal gemacht, so daß es gut gelingt, so ist es sehr interessant zu sehen, wo die größte Hitze ist, und zu finden, daß sie da ist, wo Luft und Brennstoff zusammentreffen.

Mangelhafter Luftzug. Ruß.

Das ist bei unserm ferneren Vorwärtsgehen sehr wichtig für uns. Luft ist unumgänglich notwendig zur Verbrennung; und was mehr ist: ich muß betonen, daß frische Luft nötig ist, denn sonst würden wir unvollkommen kombinieren und experimentieren. Ich habe hier eine Flasche voll Luft und stülpe sie über eine Kerze, die zuerst darin ganz hübsch brennt und zeigt, daß das, was ich sagte, wahr ist. Bald aber tritt eine Veränderung ein. Seht, wie sich die Flamme nach oben zieht, nun schwach und schwächer wird und zuletzt verlöscht. Und verlöscht, warum? Nicht weil sie nur nach Luft verlangt – denn die Flasche ist noch ebenso voll wie vordem – sondern weil sie reine, frische Luft haben will. Die Flasche ist voll Luft, die teils verändert, teils nicht verändert ist; aber sie enthält nicht genug reine Luft, wie es zur Verbrennung einer Kerze nötig ist. Das alles sind Punkte, die wir als junge Chemiker uns merken müssen, und wenn wir ein wenig genauer auf derartige Vorgänge achten, so werden wir verschiedene Anknüpfungspunkte zu sehr interessanten Betrachtungen finden. Zum Beispiel habe ich hier die Öllampe, die ich Euch zeigte, eine vorzügliche Lampe für unsere Experimente, es ist die bekannte Argand’sche Lampe. Ich verwandle sie jetzt in eine Kerze (indem ich den Durchgang der Luft in das Innere der Flamme verstopfe). Hier ist der Docht, hier steigt das Öl in ihm empor, und da haben wir die kegelförmige Flamme. Sie brennt spärlich, weil die Luft teilweise abgesperrt ist. Ich habe der Luft nur zu der Außenseite der Flamme den Zutritt gestattet, weshalb sie nicht gut brennt. Ich kann nicht mehr Luft von außen her zulassen, da der Docht zu groß ist; wenn ich aber, wie es Argand so sinnreich tat, einen Durchgang zur Mitte der Flamme öffne, und so die Luft hineintreten lasse, so werdet Ihr sehen, wie viel schöner sie brennt. Wenn ich die Luft abschließe, so seht nur, wie sie raucht. Aber warum? Da haben wir einige sehr interessante Punkte zu untersuchen. Wir hatten den Fall der vollkommenen Verbrennung einer Kerze; wir hatten den Fall, daß eine Kerze aus Luftmangel verlöschte und haben jetzt den Fall von unzureichender Verbrennung, was für uns so interessant ist, daß ich wünsche, Ihr möchtet es ebenso gut verstehen, wie die bestmögliche Verbrennung einer Kerze. Ich will jetzt eine große Flamme machen, weil wir Versuche in möglichst großem Maßstabe brauchen. Hier ist ein größerer Docht, ein Baumwollenballen mit brennendem Terpentinöl. Alle dergleichen Dinge sind ja ganz dasselbe wie Kerzen. Wenn wir größere Dochte nehmen, müssen wir eine stärkere Luftzufuhr bewirken, oder wir werden doch eine unvollkommene Verbrennung haben. Seht Euch jetzt diese schwarze Substanz an, die in die Luft steigt, es ist ein ganz regelmäßiger Strom. Ich habe jedoch Vorkehrungen getroffen, den unvollkommen verbrannten Teil fortzuschaffen, damit er Euch nicht beschmutzt. Seht den Ruß, der von der Flamme fortfliegt; seht, wie unvollkommen die Verbrennung ist, da nicht genug Luft hinzutritt. Was geschieht also? Nun, einige zur Verbrennung nötigen Dinge sind nicht da, und infolgedessen werden schlechte Resultate erzielt. Indessen sehen wir, wie es einer Kerze geht, wenn sie in reiner, also tauglicher Luft brennt. Als ich Euch die Verkohlung durch den Ring der Flamme auf der einen Seite des Papiers zeigte, hätte ich es auch umdrehen und Euch zeigen können, daß bei der Verbrennung einer Kerze dieselbe Art von Ruß – Kohle – entsteht.

Flammen anderer Art.

Aber bevor ich dieses zeige, ist es für unsern Zweck sehr notwendig, noch einen anderen Gegenstand kennen zu lernen. Obgleich uns nämlich die Kerze das allgemeine Resultat ihrer Verbrennung stets in Form einer Flamme darstellt, so müssen wir doch zusehen, ob eine Verbrennung immer in dieser Weise vor sich geht, oder ob es auch noch andere Arten von Verbrennung gibt, und wir werden bald entdecken, daß letzteres der Fall und daß dieses sehr wichtig für uns ist. Ich glaube, die beste Art der Veranschaulichung für uns junge Leute ist vielleicht, die Erscheinungen im stärksten Gegensatze zu zeigen. Hier habe ich ein wenig Schießpulver – Ihr wißt, daß das Pulver mit einer Flamme brennt – wir dürfen es Flamme nennen; es enthält Kohle und andere Stoffe, welche verursachen, daß es mit Flamme brennt. Ferner habe ich hier pulverisiertes Eisen oder Eisenfeilspäne. Jetzt will ich diese beiden Dinge zusammen verbrennen. Ich habe hier einen kleinen Mörser, in welchem ich sie mische. (Bevor ich an diese Experimente gehe, will ich warnen, daß sie niemand von Euch aus Spielerei nachmacht und sich dabei beschädigt. Dergleichen Dinge können wohl gemacht werden, wenn man sich in acht nimmt; sonst aber kann man damit viel Unheil anrichten.) Hier ist also ein wenig Pulver, welches ich auf den Boden dieses kleinen Holzgefäßes lege und mit Eisenfeilspänen vermische; ich beabsichtige nun, durch das Pulver die Feilspäne in Brand zu setzen und sie in der Luft zu verbrennen, um hierbei den Unterschied zwischen Substanzen, die mit, und solchen, die ohne Flamme brennen, zu zeigen. Hier ist die Mischung, und wenn ich sie entzünde, wobei Ihr genau auf die Verbrennung achten müßt, so werdet Ihr sehen, daß diese eine zweifache ist. Ihr werdet das Pulver mit Flamme brennen und Feilspäne aufgewirbelt sehen, und zwar auch sie brennend, jedoch ohne Flamme. Ein jedes brennt für sich allein. [Der Vortragende setzt nun die Mischung in Brand.] Hier das Pulver brennt mit einer Flamme; die Feilspäne dagegen zeigen eine andere Art von Verbrennung. Da seht Ihr nun die zwei verschiedenen Erscheinungen; und hiervon hängt alle Brauchbarkeit und Schönheit der Flammen ab, die wir zur Beleuchtung benutzen wollen. Wenn wir Öl, Gas oder Kerzen zur Beleuchtung gebrauchen, so beruht ihre Brauchbarkeit auf diesen verschiedenen Arten der Verbrennung.

Der Verbrennungsprozeß bietet so viel Merkwürdiges dar, daß es einiger Klugheit und Unterscheidungsgabe bedarf, um die einzelnen Arten der Verbrennung eine jede in ihrer besonderen Art zu erkennen. Hier ist zum Beispiel ein Pulver, welches sehr leicht verbrennt, und das, wie Ihr seht, aus lauter einzelnen kleinen Körnchen besteht. Man nennt es Lycopodium (Bärlappsamen, Hexenmehl), und jedes dieser Körnchen kann einen Dampf entwickeln und seine eigene Flamme erzeugen; wenn man sie abbrennt, so glaubt man, es sei alles eine Flamme. Ich werde einen Teil anzünden, damit Ihr die Erscheinung beobachten könnt. Wir sehen eine Feuerwolke, augenscheinlich eine einzige Masse; aber jenes knisternde Geräusch, das sich beim Abbrennen wahrnehmen läßt, ist ein Beweis, daß die Verbrennung keine zusammenhängende und gleichmäßige ist. Auf dem Theater wird damit der Blitz sehr gut nachgeahmt. [Das Experiment wird zweimal wiederholt, indem der Vortragende das Lycopodium aus einer Glasröhre durch eine Spiritusflamme bläst.] Es ist dies kein Fall einer Verbrennung, wie die der Eisenfeilspäne, von der ich gesprochen habe und auf die wir jetzt zurückkommen müssen.

Kohle in der Kerzenflamme. Das Leuchten.

Denkt Euch, ich nehme eine Kerzenflamme und prüfe den Teil derselben, der unserem Auge am hellsten erscheint. Nun, da bekomme ich diese schwarzen Teilchen, welche Ihr schon oft aus der Flamme sich ausscheiden sahet, und die ich jetzt auf eine andere Weise ausscheiden will. Ich werde dieses Licht nehmen und das Herabgeträufelte davon entfernen, welches infolge der Luftströmungen entstanden ist. Wenn ich nun eine Glasröhre gerade in diesen leuchtendsten Teil tauche, wie bei unserem ersten Experiment, nur höher, so seht Ihr, was geschieht. Statt des damals weißen, werden wir jetzt einen schwarzen Dampf haben. Er steigt empor, so schwarz wie Tinte. Er ist in der Tat sehr verschieden von dem weißen Dampf, und wenn wir ihm eine Flamme nähern, so finden wir, daß er nicht brennt, sondern das Licht auslöscht. Nun, dieser schwarze Stoff ist eben, wie ich sagte, der Rauch der Kerze, und dies erinnert mich an die alte Anwendung, welche Dean Swift seinen Dienstboten zur Unterhaltung empfahl, nämlich auf der Decke des Zimmers mit einer Flamme zu schreiben. Aber was ist diese schwarze Substanz? Es ist dieselbe Kohle, welche wir schon früher aus der Kerze erhielten. Wie kann sie sich aus der Kerze bilden? Sie war offenbar in der Kerze vorhanden, sonst könnte sie nicht hier sein. Und nun folgt mir genau in meiner Auseinandersetzung. Ihr werdet wohl kaum glauben, daß alle die Substanzen, die in Gestalt von Ruß und schwarzen Flöckchen in London herumfliegen, gerade die Schönheit und das Leben der Flamme ausmachen, und daß sie in derselben so verbrannt werden, wie die Eisenfeilspäne hier. Hier ist ein Stück Drahtgeflecht, welches die Flamme nicht hindurch läßt, und wenn ich es niedrig genug halte, daß es den Teil der Flamme berührt, welcher sonst so hell ist, so werdet Ihr sehen, daß es diesen sogleich hemmt und dämpft und eine Menge Rauch aufsteigen läßt.

Ich bitte Euch nun, auf das Folgende zu achten. Wenn eine Substanz brennt, wie die Eisenfeilspäne in der Pulverflamme, ohne dabei dampfförmig zu werden (sei es, daß sie flüssig wird oder fest bleibt), so leuchtet sie sehr stark. Ich habe hier einige Beispiele gewählt, welche von der Kerze unabhängig sind, um Euch diesen Punkt zu erläutern; denn was ich sagte, gilt von allen Substanzen, ob sie brennen oder nicht brennen, – daß sie nämlich ausnehmend leuchtend sind, wenn sie ihren festen Zustand auch in der Hitze behalten. Und die Kerze verdankt der Anwesenheit fester Teilchen in der Flamme ihre Leuchtkraft.

Das Kalklicht.