Hier ist ein Platindraht, ein Körper, der sich durch Hitze nicht verändert. Wenn ich ihn in dieser Flamme erhitze, so seht nur, wie außerordentlich hell er leuchtet. Ich werde die Flamme klein machen, damit sie nur wenig Licht gibt, und dennoch werdet Ihr sehen, daß die Hitze, die sie diesem Platindraht mitteilen kann, obwohl viel geringer, als die eigene, doch imstande ist, dem Drahte bedeutend mehr Leuchtkraft zu geben. Diese Flamme enthält Kohle; jetzt will ich aber eine Flamme nehmen, die keine Kohle enthält. In dem Gefäß hier ist ein Material, eine Art Brennstoff – eine Luftart oder ein Gas, wie Ihr es nennen wollt –, und darin sind keine festen Teile enthalten. Ich wähle diesen Stoff, weil er uns das Beispiel einer Flamme geben wird, welche brennt, ohne daß irgend ein fester Körper dabei auftritt. Wenn ich nun diesen festen Körper hineinhalte, so seht Ihr, welche intensive Hitze die Flamme hat und wie hell sie den festen Körper erglühen macht. Durch diese Röhre leiten wir dieses absonderliche Gas, welches wir Wasserstoff nennen, und welches Ihr bei unserer nächsten Zusammenkunft näher kennen lernen sollt. Und hier ist eine Substanz Namens Sauerstoff, mit deren Hilfe der Wasserstoff brennen kann; aber obwohl wir durch die Verbindung beider eine bedeutend höhere Temperatur als durch die Verbrennung einer Kerze erzeugen können, so leuchtet die Flamme doch nur wenig. Bringe ich dagegen einen festen Körper hinein, so erhalten wir ein sehr intensives Licht. Wenn ich ein Stück Kalk nehme, eine Substanz, die nicht brennt und durch Hitze nicht verflüchtigt wird (also fest bleibt), so werdet Ihr bald sehen, was geschieht, wenn der Kalk glüht. Bei der Verbrennung von Wasserstoff in Sauerstoff wird sehr große Hitze, aber sehr wenig Licht entwickelt, letzteres also nicht aus Mangel an Hitze, sondern an Teilchen, welche fest sind und auch in ihrem festen Zustande verharren. Halte ich aber dieses Stück Kalk in die Flamme – seht, wie es glüht! Es ist dies das berühmte Kalk-Licht, welches mit dem Volta’schen Licht wetteifert und dem Sonnenlicht beinahe gleich kommt. Hier habe ich ein Stück Holzkohle, welche brennt und uns genau in derselben Weise Licht gibt, als ob sie als Bestandteil einer Kerze verbrannt würde. Die Hitze einer Kerzenflamme zersetzt den Wachsdampf und macht die Kohlenteile frei; diese steigen erhitzt und glühend empor, wie dies hier glüht, und entweichen dann in die Luft – freilich nicht in Form von Kohle, sondern in vollkommen unsichtbarer Gestalt, worüber wir später sprechen werden.

Ist es nicht von großem Reiz, Einsicht in einen Prozeß zu gewinnen, durch den ein so schmutziges Ding wie eine Kohle so hell leuchtend werden kann? Ihr seht, es kommt darauf hinaus, daß alle hellen Flammen solche festen Teile enthalten. Alle Körper, welche brennen und dabei feste Teilchen entwickeln, entweder während der Entzündung, wie die Kerze, oder unmittelbar danach, wie das Schießpulver und die Eisenfeilspäne, alle solche Körper geben uns ein helles und schönes Licht.

Fig. 9.

Phosphor, chlorsaures Kali und Schwefelantimon, Zink.

Ich will Euch das durch ein paar weitere Experimente zu veranschaulichen suchen. Hier ist ein Stück Phosphor, der mit heller Flamme brennt. Wir müssen hieraus schließen, daß dieser Phosphor entweder in dem Moment der Entzündung oder später solche feste Teilchen absondert. Ich zünde nun den Phosphor an und bedecke ihn mit einer Glasglocke, um die Verbrennungsprodukte aufzufangen. Was bedeutet all der Rauch? Dieser Rauch besteht eben aus jenen Teilchen, die durch die Verbrennung des Phosphors gebildet werden. – Hier haben wir zwei andere Stoffe. Dies ist chlorsaures Kali und dies ist Schwefelantimon. Ich werde sie zusammenmischen, und dann können sie auf verschiedene Art in Brand gesetzt werden. Ich will sie zunächst, um Euch ein Beispiel chemischer Reaktion zu geben, mit einem Tropfen Schwefelsäure berühren und sie werden augenblicklich brennen. [Der Vortragende entzündet die Mischung durch Schwefelsäure.] Nun könnt Ihr schon aus dem Augenschein selbst schließen, ob diese Stoffe feste Produkte liefern. Ich habe Euch ja den Weg zu dieser Schlußfolgerung gezeigt; denn wodurch ist diese Flamme sonst so hell, als durch die emporsteigenden glühenden festen Teile?

Herr Anderson hat da in dem Ofen einen Tiegel stark erhitzt, in den ich einige Zinkfeilspäne werfen will, die dann mit einer Flamme wie Schießpulver brennen werden. Ich mache Euch dieses Experiment hier vor, weil Ihr es zu Hause gut nachmachen könnt. Jetzt sollt Ihr sehen, was das Verbrennungsprodukt des Zinkes ist. Hier brennt das Zink. Es brennt wundervoll wie eine Kerze. Aber was bedeutet all dieser Rauch? Was sind diese kleinen Wollenflöckchen, die zu Euch hinfliegen, da Ihr nicht zu ihnen kommen könnt? Es ist dies die sogenannte Philosophenwolle der Alten. Wir werden finden, daß auch in dem Tiegel noch eine Menge dieser wolligen Substanz zurückgeblieben ist. Doch will ich das Experiment noch ein wenig anders machen und doch dasselbe Resultat erzielen. Hier habe ich ein Stückchen Zink; hier [indem er auf einen Wasserstoffbrenner zeigt] ist der Verbrennungsherd, und wir wollen ans Werk gehen und das Metall zu verbrennen versuchen. Ihr seht, wie es glüht; da haben wir die Verbrennung und hier die weiße Substanz, zu der es verbrennt. Und wenn ich also diese Wasserstoffflamme als Vertreter der Kerze nehme und Euch eine Substanz wie das Zink in der Flamme brennend zeige, so werdet Ihr sehen, daß diese Substanz allein während der Verbrennung glühte, so lange sie heiß erhalten wurde; und wenn ich nun diese weiße Substanz wieder in die Wasserstoffflamme bringe, so seht nur, wie schön sie glüht und zwar gerade darum, weil es eine feste Substanz ist.

Die Leuchtgasflamme.

Ich will nun eine Flamme nehmen, wie ich sie schon einmal benutzt habe, und will aus ihr die Kohlenteilchen in Freiheit setzen. Ich nehme etwas Benzin, das mit viel Rauch brennt; aber ich lasse die Rauchteilchen durch diese Röhre in die Wasserstoffflamme gehen, wo Ihr sie brennen und leuchten sehen werdet, weil ich sie zum zweiten Male erhitze. Seht jetzt! Da sind die Kohlenteilchen zum zweiten Male entzündet. Ihr werdet diese Teilchen besser sehen, wenn ich ein Stück Papier hinter sie halte; so lange sie sich innerhalb der Flamme befinden, glühen sie durch die Hitze derselben und erzeugen eben so lange diese Helligkeit. Werden solche Teilchen nicht abgeschieden, so erhält die Flamme keine Leuchtkraft. Auch die Leuchtgasflamme verdankt ihre Helligkeit der Ausscheidung solcher Kohlenteilchen während des Brennens; denn sie sind im Leuchtgas ebenso vorhanden, wie in einer Kerze. Ich kann diese Anordnung schnell umändern. Hier ist z. B. eine Gasflamme. Wenn ich dieser Flamme so viel Luft zuführe, daß alles verbrannt ist, bevor jene Teilchen frei geworden sind, so erhalte ich keine Helligkeit. Das kann ich folgendermaßen bewerkstelligen: Wenn ich diese Kappe aus Drahtgeflecht auf den Brenner setze und dann darüber das Gas anzünde, so brennt es mit einer nichtleuchtenden Flamme, und das kommt daher, daß sich das Gas mit viel Luft mischt, ehe es zum Brennen gelangt. Und wenn ich das Drahtgeflecht emporhebe,so seht Ihr, daß es darunter nicht brennt. Im Gas ist viel Kohle; aber weil die atmosphärische Luft hinzutreten und sich vor dem Brennen damit mischen kann, so brennt es mit der blassen blauen Flamme, die Ihr hier sehet. Und wenn ich auf eine helle Gasflamme blase, so daß alle Kohle verbrannt wird, bevor sie zum Glühen kommt, so wird sie gleichfalls blau brennen. [Der Vortragende veranschaulicht diese Bemerkung, indem er auf ein Gaslicht bläst.] Der einzige Grund, weshalb ich nicht dasselbe helle Licht erhalte, wenn ich so auf die Flamme blase, ist, daß die Kohle mit einer hinreichenden Luftmenge zusammenkommt, um zu verbrennen, ehe sie in der Flamme in freiem Zustande ausgeschieden wird. Der Unterschied wird nur dadurch hervorgerufen, daß keine festen Teilchen ausgeschieden werden, ehe das Gas verbrannt ist.