Sind zu einem gewissen Zeitpunkt eine bestimmte Anzahl (n) Atome Radium-Emanation vorhanden, so existieren nach einer gewissen Zeit (t = 3,85 Tage) nur noch die Hälfte der Atome ( n2), nach der doppelten Zeit (2 t = 7,70 Tage) nur noch die Hälfte von diesem, also n4 Atome, nach der dreifachen Zeit (3 t) nur noch n8 Atome. Im Verlauf der Zeit von 3,85 Tagen, der „Halbwertszeit“, sinkt die Zahl der Atome regelmäßig durch Zerfall auf die Hälfte; sie wird infolgedessen immer geringer werden, das gänzliche Verschwinden tritt aber erst nach ungeheuer langer Zeit ein.[6]

[6] Würde der Zerfall der Emanation gleichmäßig mit derselben Zahl von Atomen weitergehen, wie er zu Beginn der Untersuchung einsetzt, so wäre schon nach 5,54 Tagen nichts mehr vorhanden. Diese Zahl nennt man die „mittlere Lebensdauer“ der Radium-Emanation; sie steht in einem genau berechenbaren mathematischen Verhältnis zur Halbwertszeit und ist das 1,44fache von dieser. In der bildlichen Darstellung der Zerfallskurve muß dieser gleichbleibende Zerfall durch die Berührungsgerade (Tangente) dargestellt werden, die im Beginn der Kurve an sie gelegt wird; sie trifft die Gerade im Punkt 1,44 t. Während die Kurve des tatsächlichen Zerfalls in ihrem Gefälle ständig abnimmt und sich der Geraden immer mehr anschmiegt, ohne sie ganz zu erreichen, behält die Tangente ihr Gefälle, welches im Beginn zugleich dasjenige der Zerfallskurve ist, gleichmäßig bei; sie ist daher schon nach der Zeit 1,44 t auf Null angelangt.

Abb. 19. Zerfallskurve radioaktiver Elemente.

Merkwürdig und bezeichnend ist nun, daß jedes Element seine besondere Zerfallsgeschwindigkeit besitzt. Während die Radium-Emanation nach 3,85 Tagen zur Hälfte zerfallen ist, tritt dieser Fall beim Radium selbst nach 1600 Jahren ein, beim Radium A dagegen schon nach 3 Minuten. Wenn der Wert für t in [Abb. 20] für jedes strahlende Element von anderer Größe gedacht wird, so vermag also die Kurve den Zerfall von jedem dieser Elemente zu veranschaulichen.

Wir wollen versuchen, das Wesen des Zerfallgesetzes, das im Grunde genommen ein Wahrscheinlichkeitsgesetz ist, durch einen Vergleich noch anschaulicher zu machen: Ein Regiment zieht ins Feld und verliert hier in jedem Monat die Hälfte seiner Mannschaften, ohne zunächst wieder aufgefüllt zu werden. Es wird dann nach einem Monat noch die Hälfte, nach 2 Monaten noch ¼, nach 3 Monaten noch ⅛, nach 6 Monaten noch 1⁄64 der ursprünglich ins Feld gerückten Mannschaft vorhanden sein. Die Wahrscheinlichkeit, daß Soldaten durch Tod, Krankheit oder Gefangennahme ausscheiden, ist bei diesem Regiment so groß, daß jeden Monat die Hälfte der Mannschaften davon getroffen wird, die „Halbwertszeit“ des Regiments wäre ein Monat. Ein anderes Regiment, das an weniger gefährdeter Stelle steht, verliert erst in 3 Monaten die Hälfte seiner Leute; es hat also nach 6 Monaten noch ¼, nach einem Jahr noch 1⁄16 der ursprünglichen Mannschaft. Seine Halbwertszeit ist drei Monate; sie ist größer als die des ersten Regiments, weil die Wahrscheinlichkeit des Ausscheidens seiner Soldaten geringer ist. Der Vergleich mit dem Zerfall der verschiedenen Radioelemente ergibt sich ohne weiteres. Die Atome des einen Elements sind in ihrem inneren Bau noch verhältnismäßig beständig, so daß es viele Jahre oder gar Jahrtausende dauert, bis die Hälfte der Atome zerfallen ist; bei andern führen die Spannungen im inneren Bau so häufig zu Explosionen, daß schon nach wenigen Tagen die Hälfte verschwunden ist. Beim Radium A sind die Atome schließlich so unsicher gebaut, daß dieser Fall schon nach 3 Minuten eintritt; kaum sind sie aus der vorhergehenden Stufe entstanden, so wandeln sie sich schon in die nächste um.

Die Wissenschaft hat eine Reihe von Verfahren ausgearbeitet, um die Zerfallzeit eines Radiumelements zu messen. Am einfachsten ist die Aufgabe bei einem Element mittlerer Zerfallsdauer wie der Radium-Emanation zu lösen. Mit feinen Elektrometern wird das Maß der Strahlung in bestimmten Zwischenräumen untersucht und genau bestimmt, wann es auf die Hälfte, ein Viertel, ein Achtel des ursprünglichen Werts gesunken ist. Bei Elementen mit längerer Lebensdauer wie dem Radium selbst wird die Menge des in einer bestimmten Zeit von ihm erzeugten neuen Stoffs gemessen und daraus berechnet, wann es sich bei gleich bleibendem Zerfall erschöpfen würde. Unter Umständen kann bei ganz geringen Mengen strahlender Substanz, deren Menge und damit deren Atomzahl bekannt ist, unmittelbar die Zahl der abgeschleuderten α-Teilchen einzeln gezählt werden; die Wissenschaft ist mit der Verfeinerung ihrer Apparate bereits so weit vorgeschritten, daß sie die Wirkung eines einzigen Atoms nachweisen kann.

Es ist also daran festzuhalten, daß die Zerfallserscheinungen von einer Unbeständigkeit im inneren Bau des Atoms herrühren, daß die Gefahr des Zerspringens für verschiedene Radiumelemente zwar verschieden, für ein- und dasselbe immer gleich ist. Die Zerfallsgeschwindigkeit eines Radioelements, ausgedrückt in den Begriffen „Halbwertszeit“ und „mittlere Lebensdauer“, bedeutet eine seiner bezeichnendsten Eigenschaften. Der Zerfall geht mit einer solchen inneren Notwendigkeit vor sich, daß seine Geschwindigkeit durch keinerlei äußere Einwirkungen auch nur im geringsten verändert werden kann. Man hat strahlende Substanzen einem Druck von 24400 Atmosphären ausgesetzt, den Einfluß von Temperaturen von −240° bis zu 2500° untersucht, die stärksten elektrischen und magnetischen Felder auf sie wirken lassen, ohne daß sich die Zerfallsgeschwindigkeit auch nur im mindesten verringert oder vermehrt hätte. Das bedeutet ganz andere Verhältnisse wie beim Zerfall von chemischen Verbindungen, bei dem der Einfluß der Druck- und Temperaturverhältnisse eine außerordentlich große Rolle spielt. Während es sich hier darum handelt, daß verschiedene Atome ihre gegenseitige Verbindung lösen, liegt beim radioaktiven Zerfall die Ursache tiefer, sie ruht im Bau der Atome selber.

Wir haben bis jetzt bei der Untersuchung der merkwürdigen Strahlungs- und Umwandlungserscheinungen nur das Radium und seine Folgeprodukte ins Auge gefaßt; da es aber, wie sich schon bei seiner Entdeckung zeigte, immer nur in gesetzmäßiger Verbindung mit Uran in der Natur vorkommt, so drängt sich ganz von selber die Frage auf, ob nicht auch ein ursächlicher Zusammenhang zwischen Uran und Radium besteht. Das ist tatsächlich der Fall. Es kann nachgewiesen werden, daß das Radium auf dem Weg über einige Zwischenstufen aus dem Uran entsteht. Von diesem stammen also alle genannten Elemente ab, sie bilden zusammen eine Zerfallsreihe, die Uranreihe. Vom Chemiker Ostwald stammt das witzige Wortspiel: „Der Urahn dieser Elemente ist das Uran.“ Uran hat mit 238 das höchste bekannte Atomgewicht. Sein Zerfall geht ganz außerordentlich langsam vor sich; die Halbwertszeit des Urans beträgt 5000 Millionen Jahre. Über mehrere Zwischenstufen hinweg, die auch zum Teil sehr hohe Halbwertszeiten haben, führt der Zerfall mit dreimaliger α-Strahlung, also dreimaligem Verlust von Heliumatomen zum Radium mit der Halbwertszeit von 1600 Jahren und von diesem aus in der bekannten Weise weiter. Die folgende Tabelle gibt eine Zusammenstellung der Glieder der Uran-Radiumreihe und ihrer wichtigsten Eigenschaften.

Name des Elements chemisches
Symbol
Atomgewicht Strahlung Halbwertszeit
Uran I U 238,2 α 5000·106 Jahre
Uran X1 UX1 234 β γ 24 Tage
Uran X2 UX2 234 β γ 1,15 Minuten
Uran II U II 234 α 2·106 Jahre
Jonium Jo 230 α 100000 Jahre
Radium Ra 225,97 α 1600 Jahre
Radium-Emanat. Ra Em 222 α 3,85 Tage
Radium A Ra A 218 α 3 Minuten
Radium B Ra B 214 β 26,8 Minuten
Radium C Ra C 214 α β 19,5 Minuten
Radium D Ra D 210 β 16 Jahre
Radium E Ra E 210 β 5 Tage
Radium F (Polonium) Ra F 210 α 136 Tage
Radium G (Radiumblei,
Uranblei)
Ra G 206