Neben dieser Reihe radioaktiver Elemente, die sich vom Uran herleiten, gibt es noch eine zweite Reihe, die von dem Element Thorium (Atomgewicht 232,15) ausgeht. Mit verschiedenen Zwischenstufen führt der Zerfall in ähnlicher Weise wie bei der Uranreihe zu einem Endprodukt, das als Thorium D (Atomgewicht 208,0) bezeichnet wird.
Eine überaus wichtige Tatsache haben wir bis jetzt noch übergangen; es ist nötig, sie jetzt näher ins Auge zu fassen. Für das Radium G, das als Endprodukt der Uranreihe auftritt, ergab sich durch genaue Untersuchung, daß es in allen physikalischen und chemischen Eigenschaften vollständig mit einem schon längst bekannten Element übereinstimmte, nämlich mit dem Blei. Nur in einer Eigenschaft zeigte sich ein Unterschied, es besaß ein anderes Atomgewicht. Moderne Methoden der Atomgewichtsbestimmung erlauben es, diese Zahl auf das allergenaueste festzustellen. Für das gewöhnliche Blei erhielt man ein Atomgewicht von 207,2, für Radium G (Uranblei, Radiumblei) ein solches von 206,0. Diese letztere Zahl paßte sehr gut zu den übrigen Tatsachen des radioaktiven Zerfalls; vom Radium (Atomgewicht 226) führt dieser mit einer fünffachen Abspaltung von α-Teilchen, deren jedes ein Heliumatom vom Atomgewicht 4 bedeutet, zum Endprodukt Radium G, das also nach theoretischer Voraussage ein Atomgewicht von 226 − 5 × 4 = 206 haben muß. Theoretisch berechnetes und experimentell bestimmtes Atomgewicht stimmten also sehr befriedigend überein. Wie nun weiterhin das Thorium D genauer untersucht wurde, da zeigte sich, daß auch dieser Stoff in jeder Beziehung die Eigenschaften des Bleis besaß, nur daß auch sein Atomgewicht von dem des Bleis abwich; für Thorium D ergab sich ein solches von 208, also ein höheres als dasjenige des normalen Bleis. Nun kannte man also drei verschiedene Bleiarten, die im wesentlichen nur durch ihre Atomgewichte voneinander zu unterscheiden waren, eine rätselhafte Sache, die großes Kopfzerbrechen hervorrufen mußte. Auf Ungenauigkeiten der Bestimmungen konnte der merkwürdige Widerspruch nicht zurückgeführt werden, denn die Methoden der Atomgewichtsbestimmung sind zu solcher Vollkommenheit geführt worden, daß auch noch die zweite Dezimale der Zahl mit ziemlicher Sicherheit angegeben werden kann. In den letzten Jahren hat sich aber die Tatsache des Vorkommens mehrerer Bleiarten mit verschiedenem Atomgewicht in allgemeine Zusammenhänge eingefügt. Es wurde nachgewiesen, daß eine Reihe von chemischen Elementen aus zwei oder mehr Stoffen besteht, die verschiedenes, dabei ganzzahliges Atomgewicht aufweisen, sich im übrigen aber kaum voneinander unterscheiden lassen. Die moderne Atomtheorie, die sich in ungeahnter Weise entwickelt hat, hat diese Erscheinung auch zu erklären vermocht. Kommende Generationen werden das verflossene Vierteljahrhundert ohne Zweifel als eines der denkwürdigsten Entdeckungszeitalter in der Wissenschaftsgeschichte verzeichnen. Die Atome, die vor 25 Jahren einer strengen Wissenschaft noch als vollkommen hypothetisch gelten mußten, haben sich als greifbare Wesenheiten entpuppt, die der Forscher zählt und wägt und die ihm wundersame Geheimnisse ihres Baus enthüllt haben. Im folgenden können nur einige Ergebnisse dieser Forschungen angegeben werden, ohne daß eine nähere Begründung möglich wäre.
Ein Atom ist nach modernen Anschauungen ein Planetensystem im Kleinen, aufgebaut aus einem Kern mit positiv elektrischer Ladung und einer Anzahl kleinster negativer Elektrizitätsteilchen (Elektronen), die in kreis- und ellipsenförmigen Bahnen um diesen Kern kreisen. Eine merkwürdige und unausdenkbare Vorstellung: Das, was wir Materie heißen, löst sich auf in positive und negative Elektrizität und ihre Bewegung! Die chemischen Eigenschaften eines Elements hängen ab von der Ladung des Kerns und der Zahl der ihn umkreisenden Elektronen, sein Atomgewicht von der Zahl der positiven Elektrizitätsteilchen im Kern. Das ist nämlich aus folgenden Gründen nicht dasselbe: Im Kern stecken positive und negative Elektrizitätsteilchen in verschiedener Anzahl; die positiven überwiegen, der Unterschied ergibt die Größe der positiven Ladung. Wenn nun aus einem Kern gleichzeitig ein positives und ein negatives Teilchen austritt, so bleibt die Ladung gleich, die Masse, das Gewicht, wird jedoch vermindert. Zwei solche Arten von Atomen werden sich chemisch vollständig gleich verhalten, weil die Ladung des Kerns und die Zahl der ihn umkreisenden Elektronen gleich ist, sie werden aber verschiedenes Atomgewicht aufweisen. Derartige Stoffe nennt die Chemie isotope Elemente,[7] weil ihnen im periodischen System der Elemente derselbe Platz zugewiesen werden muß. Es hat sich ergeben, daß eine Reihe von Elementen nichts anderes darstellt als ein Gemenge verschiedener isotoper Bestandteile. So ist z. B. das Gas Neon mit dem Atomgewicht 20,2 ein Gemenge zweier isotoper Elemente vom Atomgewicht 20 und 22, von denen das erste 90%, das zweite 10% des Gemenges bildet. Durch diese im Feinbau der Materie begründete Isotopie wird nun auch für das Rätsel der verschiedenen Atomgewichtszahlen von Uranblei, gewöhnlichem Blei und Thoriumblei eine Erklärung gegeben: Alle drei Bleiarten haben die gleiche Kernladung und die gleiche Zahl von kreisenden Elektronen, jedoch verschiedene Masse. Dabei sind Uranblei (Ra G) und Thoriumblei (Th D) zwei einheitliche Stoffe mit verschiedenem Atomgewicht, während das gewöhnliche Blei wahrscheinlich ein Gemenge gleichbleibender Zusammensetzung aus diesen zwei isotopen Bleisorten darstellt.
[7] Von griechisch: isos = gleich, topos = Lage.
Nachdem wir alles dies vorausgenommen haben, vermögen wir den ganzen Zerfallsvorgang in seinem zeitlichen Verlauf einheitlich zu verstehen und zu erklären. Haben wir ein frisch hergestelltes, reines Radiumpräparat vor uns, das frei von allen Beimengungen ist, so finden wir, daß die Stärke seiner Strahlung von Tag zu Tag zunimmt, um schließlich einen gleichbleibenden Wert zu erreichen. Das hängt folgendermaßen zusammen: Das Radium erzeugt zunächst Emanation, diese zerfällt ihrerseits wieder und erzeugt die weiteren Elemente der Zerfallsreihe bis hinab zum Radium G. Das Präparat ist also nach einiger Zeit zu einem Gemenge aller Zerfallsprodukte geworden. Da zur Strahlung des Radiums allmählich die Strahlen aller seiner Zerfallsprodukte hinzukommen, so nimmt die Gesamtstrahlung immer mehr zu; die α-Strahlung steigt zum Schluß bis auf den fünffachen Betrag. Wenn sie diesen Betrag erreicht hat, so ist das sogenannte „radioaktive Gleichgewicht“ eingetreten, das darin besteht, daß von der höheren Stufe so viel Atome der nächst niedrigen gebildet werden, wie von dieser wieder durch Zerfall verschwinden. Es kann daher von den schnell zerfallenden Stoffen jeweils immer nur eine geringe Menge vorhanden sein, von den langsamer zerfallenden Stoffen kann sich mehr halten, und wenn wir die Sache mathematisch durchdenken, so kommen wir zu dem Resultat, daß die Atomzahlen der verschiedenen Zerfallsprodukte (mit Ausnahme des Endprodukts) schließlich im Verhältnis der Zerfallsgeschwindigkeiten (der Halbwertszeiten) stehen müssen. Das hat sich tatsächlich als richtig ergeben, und ganz dasselbe ließ sich auch für das Uran feststellen. Ursprünglich chemisch reines Uran wird mit der Zeit alle seine Zerfallsprodukte einschließen müssen. Da jedoch der Zerfall verschiedener Zwischenprodukte sehr langsam vor sich geht, so wird der Gleichgewichtszustand erst nach ungeheuer langer Zeit eintreten. Es werden dann alle Zerfallsprodukte bis hinab zum Radium G innerhalb des Urans oder eines in der Natur vorkommenden Uranminerals im Verhältnis der Zerfallszeiten enthalten sein. Nehmen wir an, es sei so viel Uran vorhanden, daß in der Sekunde 1000 seiner Atome zerfallen, so muß nach dem Eintritt des Gleichgewichts von jedem der Zwischenprodukte so viel vorhanden sein, daß von ihm nach seiner eigenen Zerfallsgeschwindigkeit in der Sekunde gleichfalls 1000 Atome zerfallen. Wäre von einem Zwischenprodukt so viel anwesend, daß mehr als 1000 Atome in der Sekunde zerspringen würden, so würde der Zerfall seine Menge verringern, und es könnte sich auf die Dauer nur so viel von dem Stoff halten, daß die Zahl der von der höheren Stufe hinzukommenden Atome der Zahl der zerfallenden entspricht. Da das Radium rund 3100000mal so rasch zerfällt wie das Uran, so braucht von ihm zur sekundlichen Erzeugung von 1000 Atomexplosionen nur der 3100000ste Teil der Zahl der Uranatome vorhanden zu sein. Ein Mehr würde sich selbst aufzehren, ein Weniger würde sich durch stärkeren Zuwachs vom Uran her aufstauen. Tatsächlich hat man in sämtlichen Uranerzen und Uranmineralien der ganzen Welt immer und überall einen genau gleichbleibenden Gehalt an Radium gefunden: 0,0003 mg auf 1 g Uran.
Was aber in jeder Sekunde gleichmäßig zunimmt, weil von ihm aus nichts weiter abfließt, das ist das Endprodukt Radium G, das Uranblei. Sekunde für Sekunde strömen ihm über alle Zwischenstufen weg ebenso viele Atome zu, wie oben beim Uran zerfallen. In einem Uranmineral reichert sich auf diese Weise immer mehr das Endprodukt an; je älter es ist, um so mehr Uranblei muß es enthalten. In dem Bleigehalt eines Uranminerals ist somit ein Maß für sein Alter gegeben. Das ist das außerordentlich wichtige Ergebnis, zu dem uns die bisherigen Überlegungen geführt haben. Uran ist allerdings nicht das einzige Endprodukt des Zerfalls. Wir dürfen nicht vergessen, daß die bei den verschiedenen Strahlungen abgeschleuderten α-Teilchen nichts anderes als elektrisch geladene Heliumatome sind, die ihre Ladung abgeben und sich dann nicht weiter verändern. Bei den äußeren Partien des Erzes wird wohl das gasförmige Helium zum Teil nach außen entweichen können, in der Hauptsache werden aber die Heliumatome in dem festen Erz zwischen den andern Atomen eingeschlossen bleiben.
Mit diesen Tatsachen der Bildung von Blei und Helium in Uranmineralien ist die Grundlage einer geologischen Zeitmessung gewonnen, die hauptsächlich von englischen und amerikanischen Forschern (Boltwood, Strutt, Holmes) begründet wurde und deren Prinzip uns durch ein Bild noch klarer werden soll ([Abb. 20]). Wir denken uns einen großen mit Wasser gefüllten Behälter, aus dem in der Zeiteinheit eine bestimmte Menge ausfließt. Das Wasser fließt über eine Anzahl verschieden großer Schalen weg. Jede Schale ist gefüllt, aber jede, ob klein oder groß, spendet der nächsten dieselbe Wassermenge; soviel oben ausfließt, fließt unten einem Sammelbecken zu, dessen Wassermenge sich dadurch ständig vermehrt. Je kleiner eine der Zwischenschalen ist, um so weniger Zeit braucht das Wasser, um sie zu durchlaufen. Umgekehrt gefaßt: wenn bekannt ist, daß eine dieser Schalen in ganz kurzer Zeit ohne Zufluß entleert würde, so kann daraus geschlossen werden, daß sie sehr klein sein muß. Größe und Entleerungszeit der Schalen stehen also in gesetzmäßigem Verhältnis zueinander.
Der Vergleich springt ohne weiteres in die Augen. Der oberste Behälter soll das Uran bedeuten, die verschiedenen Zwischenschalen die mittleren Stufen des Zerfalls, von denen jede ebensoviel Atome zu gleicher Zeit empfängt wie sie weiter gibt. Schließlich bedeutet der Inhalt des letzten Behälters das Endprodukt Uranblei, das sich in seiner Menge ständig vermehrt. Die Heliumatome springen bei jedem Sturz in die nächst tiefere Schale gesondert für sich ab. Das Verhältnis von Größe und Entleerungszeit einer Schale entspricht dem Verhältnis von prozentualer Menge und Zerfallszeit der radioaktiven Zwischenprodukte. Je länger der Vorgang sich abspielt, um so mehr sammelt sich unten an. An der Menge des entstandenen Uranbleis messe ich die verflossene Zeit wie in meinem künstlichen Wasserwerk an der durchgelaufenen Wassermenge.
In einem Punkt vermag sich unser Modell allerdings nicht ganz der Wirklichkeit anzupassen. Von dem Ausgangsmaterial Uran zerfallen allmählich nach dem uns bekannten Gesetz in der Zeiteinheit immer weniger Atome. Wenn die Ausgangsmenge des Urans geringer wird, so muß sich auch allmählich die Zahl der zerfallenden Atome und die Menge der Zwischenprodukte verringern. In unserm Modell müßte sich das in der Weise geltend machen, daß mit der Abnahme der Wassermenge im obersten Behälter auch der Strahl schwächer werden, und entsprechend die Größe der Zwischenschalen sich verringern sollte. Das letzte Sammelbecken bliebe jedoch unverändert. Doch müssen wir uns klar machen, daß die Abnahme des Urans so unendlich langsam vor sich geht, daß der Zerfall für die ersten 500 Millionen Jahre ohne großen Fehler als gleichmäßig angenommen werden kann.
Das Modell, das wir uns ausgedacht haben, ergab das Bild eines reichen und kunstvollen Wasserwerks, aus dem aber das Prinzip doch klar herausleuchtet. Daß die Berechnung, die wir auf diese Weise ausführen, das denkbar schönste Beispiel für eine Zeitmessung nach dem Prinzip der Wasseruhr ist, das ist ja schon längst klar geworden. Eines steht jedoch noch aus: die mathematische Berechnung des Gangs der geologisch-mineralogischen Uranuhr. Es ist nur nötig, in einem Uranmineral die Menge des Urans und des durch den Zerfall gebildeten Uranbleis zu bestimmen, um die seit seiner Bildung verstrichene Zeit berechnen zu können.[8] Die Grundlagen hierzu sind folgende: 1 g Uran bildet in einem Jahr 17900000000 g Radioblei. Diese Zahl folgt aus der mittleren Lebensdauer des Uran, die durch genaue Einzeluntersuchungen bestimmt wurde. 100g Uran bilden also jährlich 179000000 g Radioblei, d. h. es sind 79000000 Jahre nötig, bis 100 g Uran 1 g oder 1% Uranblei gebildet haben. Das Alter eines Uranminerals wird also gefunden, indem die Zahl von 79000000 Jahren mit dem auf die erzeugende Uranmenge[9] bezogenen Prozentgehalt an Blei multipliziert wird.