Ist es nun möglich, geologische Zeiträume nach bestimmten Zeiteinheiten zu messen, Jahreszahlen auch für die Erdgeschichte zu gewinnen? Was wir dazu brauchen, ist einfach zu sagen: Es sind geologische Zeitmesser, geologische Uhren. Wir werden sehen, daß sie uns von der Wissenschaft zur Verfügung gestellt werden können; wir werden sogar finden, daß sie auf dieselbe Weise ihre Aufgabe erfüllen wie unsere allbekannten Zeitmesser.

Abb. 1. Prinzipien geologischer Zeitmessung.

Die Uhren des Altertums und des Mittelalters waren fast ausschließlich Wasseruhren. Aus der Menge des aus einem Gefäß ausgeflossenen Wassers schloß man, wieviel Zeit „verflossen“ sei, und die mechanische Kunstfertigkeit der Griechen und späterhin der Araber schuf nach diesem Prinzip wahre Kunstwerke der Mechanik: Wasseruhren, die mit Glockenschlägen die Zeit kündeten, oder bei denen künstliche Figuren an einem Zifferblatt die Stunde wiesen. Noch weit herein in die Neuzeit waren Wasseruhren die gebräuchlichsten Zeitmesser, und von der Sanduhr, bei der eine bestimmte Menge Sand durch die enge Öffnung des Stundenglases läuft, haben sich sogar kümmerliche Überreste bis in unsere Zeit gerettet: die Eieruhr der Hausfrau und die kleine Sanduhr neben dem Telephon, welche die Gesprächsdauer erkennen läßt. Das Prinzip von Wasser- und Sanduhr ist folgendes: Man weiß, wieviel Wasser oder Sand in der Zeiteinheit aus einem höher gelegenen Gefäß in ein tieferes abfließen kann und schließt aus der Menge des Abgeflossenen auf die Zeit, die dazu nötig war. Wir werden sehen, daß geologische Vorgänge des Abfließens und der Aufschüttung zur erdgeschichtlichen Zeitmessung dienen können.

Die Pendeluhren stellen eine zweite Art von Zeitmessern dar. Langsam, in immer gleichem Rhythmus, schwingt das Pendel unter der Einwirkung der Anziehungskraft der Erde hin und her. Damit es von der Reibung nicht zum Stillstand gebracht wird, erhält es im Innern des Werks bei jeder Schwingung einen neuen kleinen Anstoß. Wählt man ein Pendel von passender Länge, so kann man erreichen, daß es genau eine Sekunde zur Schwingung braucht; mit Hilfe sinnreicher Zahnradübertragung wird die Zahl seiner Schwingungen durch Zeiger zur Erscheinung gebracht. Die Bewegung dieser Zeiger bedeutet eigentlich nichts anderes als ein Abzählen der Pendelschwingungen unter Zusammenfassung von 60 und 60 × 60 Schwingungen zu größeren Einheiten.

Das Prinzip der Pendeluhr beruht also auf dem Abzählen einer Bewegung, die unter dem Einfluß der Schwerkraft periodisch erfolgt. Wir werden wunderbar geheimnisvolle Bewegungen unseres Weltkörpers kennen lernen, die ebenso durch die Schwerkraft hervorgerufen werden und die vielleicht als Grundlage geologischer Zeitmessung dienen können. Es fragt sich nur, wie solche zweifellos vorhandene Bewegungen abgezählt werden sollen. Für die kleine Periode des Jahres vermag schon jeder Baum diese Aufgabe zu lösen. Schneidet man einen Baumstamm quer durch, so zeigt sich das bekannte regelmäßige Bild der Jahresringe, an denen ohne weiteres das Alter des Baums in Jahren abgelesen werden kann; jeden Frühling bildet er eine weiche breite, jeden Herbst eine harte dünne Holzschicht. Wir werden auch geologische Jahresringe kennen lernen, die in der Art, wie sie dem Forscher Aufschluß über geologische Zeiträume geben, zwei Prinzipien der Zeitmessung vereinigen: Aufschüttung und Rhythmus.

Und nun soll der Versuch gewagt werden, mit Hilfe der Zeitmesser, die uns die Geologie kennen lehrt, die ungeheuren Zeiträume der Vergangenheit in Maß und Zahl zu fassen!

II. Geologische Zeitmessung durch Abtragung und Aufschüttung.

Wir versetzen uns im Geist ins Ruhrrevier. Mit dem Förderkorb geht’s sausend hinunter in die dunklen Tiefen eines Kohlenbergwerks. In dem Wirrsal unterirdischer Gänge arbeiten wir uns vor bis ans äußerste Ende, wo vom Häuer das kostbare schwarze Mineral losgebrochen wird. Und staunend sehen wir, daß wir nicht etwa mitten drin in der massiven Kohle stehen, sondern daß sie nur eine Schicht (ein „Flöz“) von kaum 1 Meter Mächtigkeit bildet. Steigen wir allerdings in eine höhere oder tiefere Strecke des Bergwerks, so finden wir zwischen Sandsteinen und Schiefertonen noch eine ganze Reihe anderer Flöze eingebettet, mächtigere, bis zu einer Dicke von 2 Meter, die einen leichten, bequemen Abbau erlauben, und schwächere von 10–20 cm Mächtigkeit, bei denen sich der Abbau überhaupt nicht lohnt. Fragen wir den Geologen, der von allen Schächten und Tiefbohrungen des ganzen Kohlenreviers den Aufbau des Gebirges kennt, nach der Zahl der Kohlenschichten, so sagt er uns, daß im ganzen 176 Flöze übereinander liegen, durch Gesteine, die in einem Meere gebildet wurden, voneinander getrennt. Wie sollen wir das deuten? Die Wissenschaft lehrt uns, daß sich die Kohlen in mächtigen Waldmooren aus einer fremdartig anmutenden Pflanzenwelt gebildet haben, langsam und in ungeheuren Zeiträumen. Ein hundertjähriger kräftiger Buchenwald würde bei der Verkohlung nur eine Schicht von 16 mm ergeben. Nun senkte sich das Land; das Meer brach herein; Schlamm und Sand lagerten sich über dem jungen Kohlenlager ab und schützten es so vor der Zerstörung. Dann hob sich das Land wieder, das Wasser lief ab, und von neuem erwuchs der Sumpfwald, bildete sich Kohle, bis das Meer wieder hereinbrach und auch die neue Kohle zudeckte. Und das 176mal! Wie ein langsames Atemholen der scheinbar starren Erde mutet dieses Auf und Ab an, und daß dieser Wechsel von Steinkohlensumpfwald und Meer ungeheure Zeiträume umfaßt haben muß, ist uns ohne weiteres klar. Dabei zählt man im Saarkohlengebiet sogar 325 Flöze, und die ganze Zeit, die zur Bildung all dieser wechselnden Schichten nötig war, bedeutet in der geologischen Zeitrechnung nur einen verhältnismäßig kleinen Teil einer einzigen geologischen Periode!

Ein anderes Bild: Zu Tausenden ragen in Baku am Kaspischen Meer auf engstem Raum die Erdölbohrtürme in die Luft, und zwölf Milliarden Liter Rohöl haben sie in der Zeit vor dem Krieg jährlich zutage gefördert. Nun entsteht das Erdöl nach der Ansicht der heutigen Wissenschaft aus den Überresten abgestorbener Meerestiere. Wir können nicht annehmen, daß jene Meere wesentlich dichter bevölkert gewesen seien als unsere heutigen. Was für ungeheure Zeiträume müssen aber verstrichen sein, bis sich der Meeresboden mit derartig riesenhaften Mengen solcher Stoffe vollsaugen konnte! Und auch hier wieder müssen wir dasselbe feststellen wie bei den Steinkohlen: Die Zeit, die zur Bildung der erdölführenden Schichten nötig war, ist geringfügig im Rahmen der ganzen Erdgeschichte.