Wir wollen aber doch versuchen, von diesen ersten, ganz allgemeinen Vorstellungen von der langen Dauer geologischer Zeiträume zu bestimmten, faßbaren Zahlen zu gelangen; die zahlenmäßige Untersuchung der geologischen Wirkung des fließenden Wassers soll uns diesen Fortschritt bringen. Überall, wo es in Bächen, Flüssen und Strömen zum Meere eilt, schafft es Stoffe aus dem Land hinaus, trägt dadurch ganz allmählich sein Einzugsgebiet ab (Vorgang der Denudation) und führt alles ins Meer, wo sich das mitgeführte Material niederschlägt und langsam neue Gesteinsschichten aufbaut (Vorgang der Sedimentation). Eine sehr genaue zahlenmäßige Untersuchung über die geologische Arbeit eines Flusses wurde von Schürmann vor wenigen Jahren am Neckar ausgeführt. Während eines ganzen Jahres berechnete er Tag für Tag auf Grund genauer Methoden die Wassermengen, die der Fluß aus dem Schwabenland hinaus zum Rhein führt, und Tag für Tag entnahm er ihm Proben, aus denen er den Gehalt des Wassers an aufgelösten und schwebenden Bestandteilen sorgfältig bestimmte. Während die gelösten Bestandteile hauptsächlich Salze aller Art sind, die das Wasser bei seiner Berührung mit dem Gestein ausgelaugt hat (vor allem Kalk), sind die schwebenden Stoffe feinste Ton- und Sandteilchen, die als „Flußtrübe“ mechanisch vom Wasser mitgenommen werden und die es besonders bei Hochwasser bis zur vollständigen Undurchsichtigkeit trüben können. Das Ergebnis der Untersuchungen war, daß der Neckar unterhalb Heilbronn im Jahr 1,584 Millionen Tonnen fester Stoffe aus dem Lande hinausführt.

Bei einem spezifischen Gewicht von 2,5 nimmt diese Stoffmenge einen Raum von etwas über 600000 Kubikmeter ein; würde man sie in gleichmäßiger Dicke über das ganze Einzugsgebiet des Flusses (12340 Quadratkilometer) ausbreiten, so ergäbe sich eine Schicht von 1⁄20 mm Mächtigkeit. Wenn also der Neckar sein ganzes Flußgebiet gleichmäßig erniedrigen würde, so würde er in einem Jahr 1⁄20 mm, in 20 Jahren 1 mm, in 2000 Jahren eine Schicht von 1 m Mächtigkeit abtragen. Zur Abtragung von 100 m würde er infolgedessen 2 Millionen Jahre brauchen.

Abb. 2. Querschnitt durch die Schwäbische Alb und ihr Vorland mit vulkanischen Durchschlagsröhren. Zur Zeit der Eruption muß noch eine Gesteinsdecke, wie sie durch die gestrichelte Linie angedeutet ist, über dem Vorland gelegen haben. 1 Muschelkalk, 2 Keuper, 3 Schwarzer Jura, 4 Brauner Jura, 5 Weißer Jura.

Nun können wir auf hochinteressante Weise feststellen, wie das ganze Gebiet zwischen Schwäbischer Alb und Odenwald in nicht allzuweit zurückliegender geologischer Vergangenheit ausgesehen haben muß. Zu den merkwürdigsten geologischen Erscheinungen der Erde zählt das Vulkangebiet der mittleren Schwäbischen Alb (um Kirchheim und Urach), in dem die Erdrinde von nicht weniger als 125 vulkanischen Explosionsröhren durchsetzt wird; sie zeigen sich von vulkanischem Material (Basalt) und von Gesteinsbruchstücken der durchschlagenen Schichten erfüllt. Eine Anzahl dieser Röhren steckt noch ganz innerhalb des Körpers der Alb, die sich südlich vom schwäbischen Keuperland über einem Unterbau von schwarzem und braunem Jura in wundervoller landschaftlicher Schönheit als eine steile, von Felszinnen gekrönte Mauer von Weißjura aufbaut; die übrigen liegen im Vorland (vgl. [Abb. 2]). Der nördlichste der Vulkanschlote findet sich bei Scharnhausen (südlich von Stuttgart), über 20 km vom jetzigen Albrand entfernt, in den Keuper eingesenkt und trotzdem noch Brocken von weißem Jura enthaltend. Dieser Weiße Jura, ein viel jüngeres Gestein als der Keuper, in dessen Höhe er nun in der Vulkanröhre steckt, muß bei der Explosion von oben her in das offene Loch hereingefallen sein. Es müssen also damals noch die Schichten des Weißen Jura über der ganzen Gegend gelegen haben, und das gibt uns den sicheren Beweis, daß zu jener Zeit der Albrand, wenn er schon in der heutigen Art bestand, noch mindestens 20 km weiter nördlich gelegen sein muß. Weitere Beobachtungen machen es wahrscheinlich, daß das ganze schwäbische Stufenland zwischen Odenwald und Alb damals noch von einer Gesteinsdecke von mehreren hundert Metern Mächtigkeit bedeckt war. Hier können wir nun wieder mit der Rechnung einsetzen: 100 m deckt der Neckar in 2 Millionen Jahren ab; es werden also seit jener Vulkankatastrophe, die im Obermiozän, also schon gegen das Ende der Tertiärzeit,[2] stattgefunden hat, ungefähr 4–6 Millionen Jahre verflossen sein.

[2] Vergleiche hierzu, wie bei allen andern geologischen Altersangaben, die Formationstafel auf Seite 7.

Damit sind wir zum erstenmal auf das Zeitmaß gekommen, mit dem der Geologe rechnet, und an das sich auch der Leser gewöhnen muß, die Jahrmillion. Daß es nicht nur ein gedankenloses Umsichwerfen mit großen Zahlen ist, wenn in der Geologie von Jahrmillionen geredet wird, das zeigt schon dieser erste Versuch einer rechnerischen Lösung unserer Frage klar und deutlich, obwohl sich an ihn von kritisch gestimmten Geistern noch manches Wenn und Aber anknüpfen läßt. Aber daß Jahrtausende oder Jahrhunderttausende in der Erdgeschichte nicht zureichen, ist uns jetzt schon klar geworden. Die erste Vorstellung von der Größenordnung geologischer Zeiträume ist gewonnen, und das bedeutet eine neue Erkenntnis!

Wenn der Neckar 20000 Jahre braucht, um sein Gebiet um 1 m zu erniedrigen, so ist er damit weder ein rascher noch ein besonders langsamer Arbeiter; seine Leistung bedeutet einen guten Durchschnitt. Ein Alpenfluß, der mit ganz anderer Wucht zu Tale stürzt und die Trümmer des rasch verwitternden Hochgebirges in die Ebene schafft, wird mehr leisten als der Neckar, der durch ein Mittelgebirgsland fließt, während ein langsam dahinfließender Strom des Flachlands nicht auf die Leistung des Neckars kommen wird. Es sind sehr lehrreiche Zahlen, die in dieser Beziehung von den Geologen gefunden wurden. Der erfolgreichste bekannte Zerstörer ist der Irawadi (Hinterindien), der sein Stromgebiet schon in 1300 Jahren um 1 m erniedrigt. Ihm kommen die Alpenflüsse Po und Reuß nahe, die in 2800 und 3000 Jahren dieselbe Arbeit verrichten, während das Gebiet der Hudson-Bai von seinen Flüssen erst in 165000 Jahren um 1 m erniedrigt wird.

Es soll nun aber der kühne Versuch gewagt werden, für die ganze Erde die Abtragung zu berechnen. Wenn dabei auch viele Zahlen nicht ganz richtig sein werden, so müssen wir eben hoffen, daß ein Fehler nach der einen Seite wieder durch einen entgegengesetzten aufgehoben wird, und daß auf diese Weise doch eine Zahl von leidlicher Genauigkeit herauskommt. Will man wissen, was die gesamten Ströme der Erde im Jahr an Abtragungsarbeit leisten, so ist es nötig, zweierlei zu kennen: Die jährliche Wassermenge aller Flüsse und den Gehalt ihres Wassers an Gelöstem und Aufgeschwemmtem. Es ist klar, daß nur für wenige Stromsysteme solche Messungen vorliegen, wie vom Neckar. An ihre Stelle muß eine vorsichtige Schätzung treten, die aber in einer Reihe von meteorologischen, geographischen und geologischen Tatsachen zuverlässige Grundlagen hat. Nachdem schon die englischen Geologen Mellard Reade und Murray die Berechnung versucht hatten, gab in neuerer Zeit der amerikanische Geologe Clarke die zuverlässigsten Zahlen. Er erhielt unter möglichst genauer Berücksichtigung aller Verhältnisse für die Flüsse der ganzen Erde eine Jahresleistung von 2500 Millionen Tonnen gelöster und 6000 Millionen Tonnen schwebender fester Stoffe, was eine Gesamtjahresleistung von 8500 Mill. Tonnen ergibt. Würde diese Stoffmenge, die von den Flüssen in einem Jahr ins Meer getragen wird, über das von ihnen entwässerte Festland ausgebreitet, so erhielte man eine gleichmäßige Schicht von 1⁄28–1⁄30 mm Dicke; es vergeht also ein Zeitraum von 28000 bis 30000 Jahren, bis die Erdoberfläche von den Flüssen durchschnittlich um 1 m erniedrigt wird. Zu der Arbeit der Flüsse kommt noch die zerstörende Wirkung der Meereswogen an der Küste hinzu, die gleichfalls dem Meere Stoffe zu Sedimentgesteinen liefert und die Gesamtmenge der ihm jährlich zugeführten Stoffe auf etwa 9000 Millionen Tonnen erhöht. Über das Schicksal aller dieser Stoffe können wir aussagen, daß ein Teil der gelösten Stoffe, vor allem die Chloride (in erster Linie Natriumchlorid = Kochsalz) in Lösung bleibt und damit den Salzgehalt des Meeres erhöht, während z. B. der größte Teil des gelösten kohlensauren Kalks sich ausscheidet. Die aufgeschwemmten Stoffe setzen sich natürlich ohne weiteres im Meere ab und bilden die sog. mechanischen Sedimente. Clarke versuchte auch, die Menge der verschiedenen neu gebildeten Gesteinsarten zu berechnen, und fand, daß von den 9000 Millionen Tonnen 70% (6300·106 Tonnen) zu Ton- und Schiefergesteinen werden, 16% (1440·106 Tonnen) zu Sandsteinen und 14% (1260·106 Tonnen) zu Kalkstein.

Um Zahlen für die Zeitdauer geologischer Vorgänge zu gewinnen, halten wir uns nun zuerst an die gelösten Stoffe. Joly hat 1899 einen scheinbar sehr einfachen Weg angegeben, um das Alter des Ozeans zu berechnen. Sein Gedankengang ist folgender: Als sich bei zunehmender Abkühlung der Erde das Wasser in flüssiger Form an der Oberfläche niederschlug, da bestand dieser Urozean aus chemisch reinem Wasser, er war also ohne Salzbeimischung. Die Salze kamen auf die Weise in das Meer, daß die Verwitterung eine Reihe von Stoffen aus den Urgesteinen (Gneis, Granit) herauslöste und ins Meer führte. Die einen schieden sich hier aus und bildeten Gesteine, andere aber, vor allem die Alkalisalze (Salze des Natriums und Kaliums) blieben in Lösung und verursachen nun den Salzgehalt des Meeres. Die größte Rolle spielt dabei das Kochsalz (Chlornatrium). Auch heute noch werden von den Flüssen Natriumsalze in das Meer geführt, die aus der Verwitterung der Urgesteine stammen und den Salzgehalt des Meeres andauernd langsam vermehren. Wir kennen den Gehalt des ganzen Ozeans an Natriumsalzen (der Prozentgehalt des Meeres an Salzen ist bekannt, die Wassermenge des ganzen Ozeans läßt sich unschwierig berechnen) und die Menge des von den Flüssen jährlich ins Meer geführten Salzes. Dividieren wir beides, so erhalten wir die Zahl der Jahre, die nötig waren, um den Salzgehalt des Meeres bis zur heutigen Höhe anwachsen zu lassen. Die Berechnung geschieht nach folgender einfacher Gleichung: