§ 3. Einschalten eines Punktes. Die [Fig. 2] zeigt auch, wie man die Kote k eines beliebigen, auf g gelegenen Punktes P ermittelt, denn es ist PP* = kk1. Sie zeigt ferner, wie man bei gegebener Höhenzahl k den zugehörigen Punkt P auf der Geraden g konstruiert: Man trägt, unter Rücksicht auf das Vorzeichen der Kotenunterschiede, auf P2P2* = k2k1 die Strecke k2k ab, entweder von P2* aus bis Q und zieht dann die Parallele QP* zu P2P1, oder besser von P2 aus bis R und zieht dann die Parallele RP zu P2*P1; wenn k2k1 und k2k verschiedenes Vorzeichen haben, muß man k2k an P2P2* verlängernd antragen, wie es bei der Konstruktion von (P) geschehen ist. Übrigens sind diese Konstruktionen weder davon, daß P2P2*P2P1 ist, noch von dem gewählten Höhenmaßstab abhängig. Auch rechnerisch, sehr bequem und ausreichend genau mittels des Rechenschiebers, läßt sich die Kote von P nach der Formel

k = k1 + P2P/P1P2 · (k2k1)

bestimmen.

§ 4. Stufung (Graduierung) einer Geraden. Durch Wiederholung der eben beschriebenen Konstruktion kann man auf einer durch zwei Punkte P1P2 eines kotierten Risses gegebenen Geraden g solche Punkte bestimmen, deren Höhenzahlen von Einheit zu Einheit, oder von 10 zu 10 Einheiten oder dergleichen, fortschreiten, wie das in [Fig. 3] mit bestimmten Werten ausgeführt ist. In P2 ist an g unter beliebigem Winkel die Strecke P2P2* in Länge von 22,6 – 18,7 = 3,9 beliebigen Einheiten angetragen und auf ihr in denselben Einheiten 22,6 – 22 = 0,6, 22,6 – 21 = 1,6 usw. abgetragen; die Parallelen durch die erhaltenen Punkte schneiden auf g die Stufung (Graduierung) oder den Gefällemaßstab aus. Die gestufte Gerade erscheint wie ein aus großer Höhe gesehener Steigbaum mit Sprossen.

Fig. 3.

Eine lotrechte Gerade hat als Projektion einen Punkt und ist durch dessen Angabe eindeutig bestimmt. Eine wagerechte Gerade hat keinen Gefällemaßstab; sie ist durch ihre Projektion und durch Angabe der Höhe irgendeines ihrer Punkte eindeutig bestimmt.

§ 5. Intervall. Die Entfernung zweier aufeinanderfolgender Punkte des Gefällemaßstabes einer gestuften Geraden, gemessen in der Rißebene, heißt ihr Intervall i, und eine leichte geometrische Überlegung oder auch die in [§ 2] gegebene Formel für das Gefälle ergibt tg φ = 1 : i. Je steiler also die Gerade ansteigt, um so kleiner ist ihr Intervall, um so enger ihre Graduierung.

§ 6. Schnitt zweier Geraden. Zwei Geraden g1', g2' des Raumes schneiden sich dann und nur dann, wenn ihre Projektionen g1, g2 einen Punkt mit gleicher Kote gemeinsam haben; sie sind parallel, wenn ihre Gefällemaßstäbe durch Parallelverschiebung zur Deckung gebracht werden können, d. h. wenn erstens g1 parallel zu g2, zweitens i1 = i2 ist, und drittens die Graduierungen von g1 und g2 denselben Richtungssinn haben. Ist die dritte Bedingung nicht erfüllt, so sind die beiden Geraden g1', g2' nicht parallel, sondern jede von ihnen ist zu der Geraden, die sich durch irgendeinen ihrer Punkte parallel zur anderen ziehen läßt (z. B. g2'' || g2'), symmetrisch bezüglich des Lotes durch diesen Punkt ([Fig. 4]).