Da man es im folgenden immer mit der Zeichnung in der Rißebene zu tun hat, so spricht man in der Regel von dem Fallwinkel, dem Gefälle usw. der gezeichneten Geraden g, der Projektion von g', obwohl man darunter natürlich stets die Größen meint, die g' selbst zukommen. Darauf ist in Zukunft zu achten.
§ 2. Maßstab der Zeichnung. Die Abmessungen der Zeichnung werden meist mit denen der Wirklichkeit nicht übereinstimmen, sondern geben sie in verkleinerten Maßstäben wieder. Verhalten sich z. B. die Horizontalentfernungen der Zeichnung zu denen der Wirklichkeit wie 1 : α (bei den preußischen Meßtischblättern wie 1 : 25 000), die gezeichneten Höhen zu den wirklichen wie 1 : β, so ist die wirkliche Entfernung nicht mehr
l = √P1P2² + (k1 – k2)²),
sondern sie ist
L = √α² · P1P2² + β² · (k1 – k2)²),
und der Neigungswinkel im allgemeinen nicht φ, so daß
tg φ = k2 – k1/P1P2,
sondern gleich Φ, so daß
tg Φ = β/α · k2 – k1/P1P2.
Nur wenn β = α, wenn also Horizontalentfernungen und Höhen im selben Maßstab 1 : α aufgetragen sind, ist L = αl, Φ = φ. Obwohl das praktisch selten angängig ist – meist ist β > α; Überhöhung –, wird es im folgenden, wo nichts anderes gesagt ist, doch der Einfachheit wegen stets vorausgesetzt, zumal viele Konstruktionen von der Wahl der Maßstäbe ganz unabhängig sind.