Fig. 38.

§ 37. Der Storchschnabel (Pantograph; Christoph Scheiner, † 1650) besteht ([Fig. 38]) aus zwei durch eine Parallelogrammführung (CD = ES, CE = DS) verbundenen Stangen AC und BC mit gemeinsamem Drehpunkt C; aus der Ähnlichkeit der Dreiecke ADS und ACB folgt AS : AB = AD : AC. Wenn also der Punkt A des Apparates am Zeichentisch oder Reißbrett festgemacht wird, bei S sich ein über der abzuzeichnenden Karte beweglicher Fahrstift (scharfe Spitze, die durch eine daneben angebrachte ein wenig längere Stütze dicht über der Karte geführt wird), bei B der auf dem Papier zeichnende Bleistift befindet, so liefert der letztere eine Vergrößerung im Verhältnis AD : AC. Ist SB' = AC, so beschreibt B' dieselbe Figur wie S.

Für die hier in Frage kommenden Zwecke genügt meist ein ganz einfacher Apparat, wie er für weniges Geld zu haben ist. Man wird ihn nötigenfalls ein wenig ausrichten und seine Vergrößerung prüfen müssen. Dies geschieht, indem man mit dem Fahrstift eine bekannte Strecke durchläuft und sie mit der vom Bleistift gezeichneten Strecke vergleicht.

§ 38. Glatte Kurve. Oft wird verlangt, durch eine Reihe passend gegebener Punkte eine glatte Kurve zu legen. Diese Aufgabe ist bis zu einem gewissen Grade willkürlich, weil der Begriff der »glatten Kurve« nicht bestimmt genug ist. Man zieht eine solche Kurve mit Benutzung des Kurvenlineals. Auch die Schichtlinien sind so zu zeichnen, aber nicht, wie es manchmal zu sehen ist, mit willkürlichen Wellen und Zacken dazwischen, die viele Konstruktionen ganz unausführbar machen würden.

§ 39. Spiegellineal. Um an eine durch Zeichnung gegebene ebene Kurve in einem gegebenen Punkte die Tangente oder Normale zu konstruieren, bedient man sich zweckmäßig eines Spiegellineals, d. h. eines Lineals, das an einer zur Zeichenebene senkrechten ebenen Seitenfläche das Spiegelbild der gezeichneten Kurve erkennen läßt. Dreht man es so lange um den gegebenen Punkt, bis Spiegelbild und gezeichnete Kurve ohne merklichen Knick ineinander überzugehen scheinen, so ist die Schnittgerade der Spiegel- und Zeichenebene Normale der Kurve, ihre Senkrechte im gegebenen Berührungspunkte also die Tangente.

Als Spiegellineal läßt sich ein mit einer geraden Kante versehener, und, damit die Vorderfläche, nicht die Hinterfläche spiegelt, schwarz hinterlegter Spiegelglasstreifen verwenden; für viele Zwecke genügt auch ein mitten auf die nicht abgeschrägte Zentimeterteilung eines gewöhnlichen Rechenschiebers geklebtes geglättetes und mit dem Ballen der Hand poliertes Stück Stanniol.

§ 40. Tangente. Von einem geeignet gegebenen Punkte, der nicht auf einer gegebenen Kurve liegt, läßt sich zwar recht genau an diese eine Tangente mit dem Lineal legen; doch bleibt dabei die Lage des Berührungspunktes unscharf. Man findet ihn durch eine Korrektions- oder Fehlerkurve, die man z. B. erhält, indem man eine Reihe von Sekanten zieht, entweder durch den gegebenen Punkt, oder der gezeichneten Tangente parallel, deren zwischen der Kurve gelegene Sehnen man halbiert ([Fig. 39]).

Fig. 39.

§ 41. Hüllkurve. Statt daß eine Kurve zeichnerisch durch eine genügende Anzahl Punkte bestimmt wird, kommt es auch oft vor, sie zu zeichnen, wenn eine hinreichende Anzahl Tangenten von ihr gegeben sind; das wird ebenfalls durch passendes Anlegen des Kurvenlineals ausgeführt.