Der Basismessung gehen die Planierungsarbeiten des Basisterrains voraus, um Unebenheiten des Terrains über 3° Böschung, die durch den Apparat nicht überwunden werden können, durch Abkämmen, resp. Aufführung von Pfahlrosten etc. zu entfernen. Ist dieses geschehen, so werden bei einer langen Basis mittels eines über einem Endpunkt aufgestellten Theodolits (s. d.) in der Richtung nach dem andern Endpunkt Zwischenpunkte bestimmt und diese durch feine Stifte markiert. Von dem einen Endpunkt anfangend, werden dann so viel Böcke aufgestellt, daß auf diese sämtliche Meßstangen hintereinander gelegt werden können. (Fig. 2 zeigt eine auf zwei Böcke gelegte Meßstange.) Das vorderste Ende der ersten Meßstange wird mit dem ersten Endpunkt der Basis in Verbindung gebracht und diese Stange wie auch alle andern mittels Theodolits so eingerichtet, daß sie genau in der Richtung der Basis liegen. Es werden dann mittels der Glaskeile die Entfernung e f (Fig. 1) sowie die Zwischenräume zwischen je zwei Meßstangen gemessen; endlich wird an den Libellenschrauben die Neigung der Meßstange abgelesen. Ist eine Stange entweder zu nahe oder zu weit von der vorliegenden gelegt worden, so daß der Gebrauch der Glaskeile nicht durchführbar, so muß vorher die Stange mittels Mikrometerschraube in den nötigen Abstand gebracht werden. Sind die Ablesungen gemacht und notiert, so wird die erste Stange in die Verlängerung der letzten gebracht und die Messung in derselben Weise fortgesetzt. Da die Messung einer Basis mindestens 14 Tage angestrengter Thätigkeit erfordert, die Arbeit mithin öfters unterbrochen und wieder angeknüpft werden muß, so sind provisorische Festlegungen erforderlich, die mit größter Genauigkeit ausgeführt werden müssen und besondere Maßregeln erfordern, damit bei Wiederaufnahme der Messung auch die kleinsten

825

Triangulation (erster Ordnung).

Fehler vermieden werden. Die bei der Messung ausgeführten Beobachtungen geben das Mittel, die Länge der Basis zu berechnen und auch ferner den wahrscheinlichen Fehler in Bezug auf die Länge zu bestimmen (im allgemeinen kaum ein Milliontel der ganzen Länge). Die Endpunkte der Basis werden behufs späterer Wiederbenutzung sehr fest im Terrain markiert. Der beschriebene Basismeßapparat ist der Reichenbachsche oder Besselsche "Keilapparat", derselbe wird in Preußen, Bayern und Italien gebraucht, Rußland und Schweden benutzen den "Fühlhebelapparat" (s. d.), die Niederlande, Spanien und Portugal den Brunnerschen "Mikroskopenapparat". Ein neuerer von General Baeyer und Bauernfeind empfohlener Apparat ist das Steinheilsche, auf Schienenbahn laufende gußstählerne "Meßrad" mit Zählapparat (im hoch, zwischen Holzwandungen laufend); letzterer Apparat etwa analog dem von Fernel in Frankreich 1525 und Müller in Mähren 1720 zur dortigen Landesvermessung angewendeten Meßrad.

Ist die Länge der Basis durch Messung und nachherige Berechnung bekannt, so ist es möglich, in einem Umkreis von 200 km Halbmesser beliebig viele Punkte zu bestimmen. Dieses geschieht wie folgt: 1) Die Basis A B (Fig. 3) wird bis zu einer Entfernung G H von 40-100 km Länge auf die in der Figur veranschaulichte Weise vergrößert. In jedem der vorhandenen Dreiecke brauchen nur je zwei Winkel gemessen zu werden, um demnächst die Seiten C B, C A und D A, D B, dann C D, darauf E C, E D, F C, F D etc., endlich G H zu berechnen. 2) Von der Seite G H ausgehend, werden Ketten von Dreiecken nach verschiedenen Richtungen bis zu 200 km Entfernung von der Basis geführt und diese Ketten miteinander so verbunden, daß Flächen, welche von Dreiecken nicht überzogen, jedoch ganz umschlossen sind, dazwischen bleiben. Es folgt 3) die Ausfüllung der zwischen den Ketten freigelassenen Räume mit Dreiecken. 4) In die unter 2 und 3 aufgeführten Dreiecke werden Dreiecke eingeschaltet, deren Seitenlängen bis zu 10 km herabsteigen. 5) In letztere Dreiecke werden endlich solche eingeschoben, deren Seitenlängen sich bis zu 2 km vermindern. Alle Messungen, die sich auf 1 und 2 beziehen, umfassen die T. erster Ordnung, die auf 3 bezüglichen die sekundäre T. erster Ordnung, die auf 4 bezüglichen die T. zweiter Ordnung, die auf 5 bezüglichen die Detailtriangulation oder T. dritter Ordnung.

Die T. erster Ordnung gibt die Grundlage zu allen folgenden Triangulationsarbeiten; sie erfordert daher die Anwendung der vorzüglichsten 10-15zölligen Theodolite (s. d.) sowie die größte Sorgfalt bei den Messungen. Die Arbeiten beginnen mit der Rekognoszierung des Terrains und der Auswahl der Punkte, welche behufs Ausführung der Beobachtungen namentlich in waldigem und etwas koupiertem Terrain durch Aufführung von bedeutenden Bauten (Signalen) sichtbar gemacht werden müssen. Die Höhe der Signale variiert je nach den Hindernissen, welche die Durchsicht von einem Punkt zum andern decken, von 3-30 m. Die Signale werden aus starkem Holz so errichtet, daß sie bei heftigem Wind nicht erschüttert werden, und daß derjenige Teil, auf dem das Instrument zu stehen kommt, vollständig isoliert ist von demjenigen Teil, auf dem sich der Beobachter befindet. Dies erreicht man durch zwei ineinander stehende, völlig getrennte Bauten. Statt der Holzsignale werden bei geringern Höhen Steinpfeiler errichtet (1 m hoch), bei Kirchtürmen auf deren Plattform. Diesen Vorbereitungsarbeiten folgen die Beobachtungen. Wegen der großen Entfernung der Punkte voneinander und in Rücksicht auf die möglichst besten Einstellungsresultate wird aber bei der T. erster Ordnung davon abgesehen, die auf den Signalen angebrachten Spitzen oder Tafeln etc. als Einstellungsobjekte zu nehmen, vielmehr stets das mittels des auf dem Nachbarsignal aufgestellten Heliotrops (s. d.) reflektierte Licht eingestellt. Behufs der Beobachtungen wird der Horizontalkreis des Theodolits genau horizontiert, und dann auf jedem Punkt sämtliche vorhandene Richtungen mindestens 24 mal eingestellt, so daß alle Winkel gleich oft gemessen werden. Zur Eliminierung der sehr kleinen, aber stets vorhandenen Einteilungsfehler des Horizontalkreises nimmt man sämtliche Beobachtungen nicht auf einer Station in derselben Stellung des Kreises vor, sondern verändert unter Beibehaltung derselben Stellung des Instruments den Horizontalkreis um einen bestimmten Winkel (gewöhnlich 60°). Auch wird bei der exzentrischen Lage des Fernrohrs in jeder Kreislage jedes Objekt ebenso oft in der einen wie in der andern genau um 180° entgegengesetzten Stellung des Fernrohrs eingestellt. Aus dem Mittel beider Resultate folgt dann der auf das Zentrum des Instruments sich beziehende Winkel. Zwei weitere Feldarbeiten sind: a) Das Nehmen der Zentrierelemente. Da es nicht immer möglich, den Heliotropen oder den Theodolit im Zentrum der Station aufzustellen, so ist die Abweichung hiervon zu messen, um diese den später zu berechnenden Winkeln als Korrektion hinzufügen zu können. b) Das Festlegen des Punktes. Dieses ist unbedingt erforderlich, wenn die Messungen einen dauernden Wert haben und die Anknüpfung späterer Messungen ermöglichen sollen. Es geschieht durch Marksteine, bei der T. erster Ordnung durch eine versenkte, ca. 50 cm im Quadrat große Platte und einen daraufgestellten, ca. 1 m hohen, ca. 50 cm zu Tage tretenden Block. In beide, Stein und Platte, sind in der Mitte der Steinflächen Kreuzschnitte angebracht, deren Mittelpunkte das Zentrum der Station bedeuten. Nach Beendigung der Feldarbeiten beginnt die Berechnung der Kette. Da es nur selten möglich, auf einer Station stets sämtliche Objekte einzustellen, so wird das Mittel aus allen Einstellungen auch nicht deren wahrscheinlichsten Wert ergeben. Die Ermittelung desselben wird durch die Ausgleichung der Stationen erreicht. Es folgt sodann das Zentrieren der Winkel bei denjenigen Stationen, bei denen der Theodolit oder der Heliotrop nicht im Zentrum der Station aufgestellt war. Sind die wahrscheinlichsten Werte der Richtungen hiernach korrigiert, so folgt die Ausgleichung der Kette. Da nämlich in jedem Dreieck sämtliche Winkel gemessen werden und es unmöglich ist, dieselben absolut richtig zu messen, so folgt, daß die Summe der gemessenen Winkel nicht gleich sein wird 180° + dem sphärischen Exzeß (d. h. der Zusatz an Winkelgröße über 180° an der Summe der Winkel eines Kugeldreiecks). Außerdem folgt aus der nicht absoluten Richtigkeit der Winkel, daß bei der Berechnung der Dreiecksseiten stets verschiedene Werte gefunden werden müssen,

826

Triangulation (zweiter Ordnung, Detailtriangulation, Höhenmessungen).

je nachdem der eine oder der andre Winkel zur Berechnung benutzt wird. Beides wird durch die Ausgleichung eliminiert, sämtliche Dreiecke werden so auf 180° + sphärischen Exzeß gebracht, und außerdem erhält jede Dreiecksseite in dem ganzen Netz nur einen einzigen Wert. Die Ausgleichung erfordert die Aufstellung und Auflösung von Gleichungen, deren Anzahl von der Zahl der zu bestimmenden Punkte und der vorhandenen Richtungen abhängt. Die Grenze für die wahrscheinlichen Fehler der Dreiecksseiten erster Ordnung beträgt 1/100000 der Länge.

Die T. zweiter Ordnung (sekundäre T.) wird im allgemeinen wie die T. erster Ordnung ausgeführt; nur gestattet der feste Rahmen, der diese Dreiecke umschließt, bei den Beobachtungen wie bei den Ausgleichungen ein etwas abgekürztes Verfahren. Bei der sekundären T. erfolgen die Rekognoszierungen, die Bebauung und Festlegung wie bei der T. erster Ordnung. Die Beobachtungen werden mit achtzölligen Theodoliten ausgeführt, die Pyramidenspitzen, Kirchturmspitzen als Einstellungsobjekte genommen und jeder Winkel zwölfmal gemessen. Stationsausgleichung findet nicht statt, und die Ausgleichung des Netzes wird nicht im ganzen, sondern nur gruppenweise ausgeführt. Die Fehlergrenze der Dreiecksseite beträgt 1/50000 der Länge. Bei der Detailtriangulation endlich ist wegen der geringen Entfernung der Punkte voneinander die Rekognoszierung und Bebauung bedeutend vereinfacht. Die Signale sind im allgemeinen nur ca. 4-6 m hohe drei- oder vierseitige Pyramiden. Die Festlegung besteht in einem einfachen Block mit Kreuzschnitt. Zu den Beobachtungen werden fünfzöllige Theodoliten benutzt und die Winkel durch sechsmalige Einstellung gewonnen. Bei der Berechnung wird der sphärische Exzeß nicht berücksichtigt. Dreiecksfehler werden auf die drei Winkel verteilt und die Länge der Seiten aus dem arithmetischen Mittel der aus den verschiedenen Dreiecken sich ergebenden Werte derselben Seite mit 1/25000 Fehlergrenze ermittelt. In Fig. 4 sind die Triangulationen der verschiedenen Ordnungen veranschaulicht, und es bezeichnen die starken Linien die T. erster Ordnung, die schwachen die T. zweiter Ordnung und die punktierten die Detailtriangulation.