Fig. 343.
Fig. 344.
Der Keil ist ein dreiseitiges Prisma, von dem 2 Seitenflächen unter sehr kleinem Winkel zusammenstoßen; die Seitenflächen sind im Querschnitt gleich lang; die dritte Fläche heißt der Rücken.
Ist der Keil zwischen zwei Gegenstände geschoben, die dem weiteren Eindringen einen großen Widerstand entgegensetzen, und übt man auf den Rücken des Keiles eine Kraft Q aus, so zerlegt sie sich nach dem Kräfteparallelogramm in zwei Seitenkräfte P und P, welche senkrecht stehen zu den Seiten des Keiles. Aus der Ähnlichkeit der Dreiecke folgt: die Kraft P verhält sich zum Drucke Q wie die Seite des Keiles zum Rücken. Da diese Seitenkräfte P bei kleinem Winkel vielmal größer sind als Q, so sind sie wohl imstande, einen großen Widerstand zu überwinden. Der Keil liefert also auch Kraftgewinn. Ist der Winkel des Keiles = 60°, so ist jede Kraft P = Q.
Ein Holzklotz wird durch Eintreiben eines Keiles zersprengt. Ein solcher Keil hat meist etwas gekrümmte Flächen, so daß besonders später, wenn der Keil immer tiefer eindringt, und der Widerstand mit der Entfernung der klaffenden Ränder größer wird, sich solche Teile der Keilseiten zwischen den Rändern befinden, deren Winkel sehr klein ist, so daß der Kraftgewinn nun sehr groß ist.
Auch zum Befestigen dient der Keil; z. B. man spaltet das eine Ende eines hölzernen Stieles eines Hammers, steckt es in das Öhr des Hammers und treibt nun einen Keil aus hartem Holze in den Spalt; dieser drückt die zwei Teile des gespaltenen Stieles sehr stark an die Wände des Öhres und bewirkt so eine starke Befestigung.