When the analysing Nicol is arranged with its vibration direction parallel to that of the polariser, we obtain bright light on the screen on actuating the electric lantern, and the image of an object on the stage can thus be projected on the screen on a bright ground. But when the analyser is crossed to the polariser, that is, rotated to the position 90° from this parallel position, the two planes of vibration of the Nicols being then at right angles, the screen is quite dark. Before continuing in this dark field our experimental study of quartz, which is obviously a type of the more exceptionally behaving substances owing to its special structure, it will be wise to examine a more ordinary kind of crystalline substance. For this purpose gypsum—better known in optical work as selenite, hydrated sulphate of lime, CaSO4.2H2O, crystallising in beautifully transparent and often large crystals belonging to the monoclinic system, a typical one of which has been illustrated in Fig. 9 (page [14]), and which we have already referred to in connection with the Mitscherlich experiment described in Chapter VII.—is especially suitable, on account of its clear and colourless transparency, the large size of crystals available, and the brilliancy of the polarisation colours which they afford when adequately thin. A very perfect cleavage being developed parallel to the symmetry plane, the clinopinakoid {010}, such thin films, of even thickness throughout, can be readily prepared.
Such a very thin cleavage plate, about 1½ inches in its longest dimension, is mounted with Canada balsam between a pair of circular glass plates 1⅞ inches in diameter, the standard size of object plates for the projection polariscope; the double plate is then supported in a mahogany frame also of the standard size—4 by 2¼ inches, with clear aperture of 1⅝ inches diameter and supporting rabbet for the plate 1⅞ to 2 inches diameter—on the rotating stage by a pair of spring clips. The Nicols being arranged with their vibration directions parallel, in order to permit light to travel to the screen, and the lenses being arranged properly for a sharply focussed picture of suitable size, the outline of the crystal plate will be seen on the screen, and the whole area of the crystal will either at once appear coloured, or will do so on more or less rotation of the stage carrying the crystal, which rotates the latter in its own plane. The crystal outline is of the character shown in Fig. 80, which also gives the positions of the crystal axes a and c, and a simple stereographic projection of the faces of the crystal, from which the nature of the faces bounding the section-plate will be clear.
Fig. 80.—Section of Gypsum Crystal showing the Extinction Directions.
On rotating the Nicol analyser the colours change, and appear at their maximum brilliancy when the field is dark and the Nicols crossed. Leaving the analyser crossed to the polariser, and rotating the stage and therefore the crystal, the colours again change, and at certain positions 90° apart during the rotation, marked by the two strong lines in Fig. 80, they disappear altogether, and the crystal becomes dark like the rest of the field, while the positions of maximum brilliancy of colour are found to be situated at the 45°-positions intermediate between these positions of “extinction.” When the quenching occurs the vibration planes of the two rays, travelling by virtue of double refraction through the crystal, are parallel to the planes of vibration of the rays transmitted through the two Nicols, and the fact is a very important one, enabling us to determine the directions of light vibration in the crystal. In the case of our gypsum plate, the cleavage of gypsum being parallel to the unique plane of symmetry of the monoclinic crystal, these two positions are the directions of the two axes of the optical ellipsoid which lie in the symmetry plane, and they correspond to the vibration directions of rays affording the refractive indices α and γ. The direction corresponding to γ is that of the “first median line,” the bisectrix of the acute angle between the optic axes; while α corresponds to the obtuse bisectrix or “second median line.” These directions are clearly marked by the strong lines in Fig. 80. The third axis of the optical ellipsoid is obviously perpendicular to the plate and to the symmetry plane, and corresponds to the intermediate refractive index β. Thus this simple observation of the extinction directions in such a case as gypsum enables us at once to fix completely the orientation of the optical ellipsoid, a fundamental optical determination.
A second thin plate of gypsum may next be examined, similarly prepared and mounted. It is clearly a composite one, being composed of a pair of twins. For when placed on the stage in the dark field of the crossed Nicols, and rotated to the position for maximum brilliancy of colour, it shows different colours in the two halves, as indicated by different shading in Fig. 81. If, however, the analysing Nicol prism be withdrawn from the plinth-bed and removed altogether the crystal appears in its natural colourless condition as a single one, with no indication whatever of any line of division.
Fig. 81.—Twin of Gypsum as seen in Parallel Polarised Light.
Some exceedingly brilliant polarisation effects are afforded by a number of objects exhibited by the author in his lecture at Winnipeg, composed of selenite (gypsum) twins and triplets, some arranged to cross one another like the mica films of Reusch described in the last chapter, but only for a single rotation, three twin strips going to a rotation, at angular distances of 120°; others are arranged in geometrical patterns, and in circles overlapping one another, and the whole series afford the most gorgeous and variegated display of colour imaginable, the colours, moreover, altering either on rotation of the stage or of the analysing Nicol, and thus passing through every tint conceivable.
Having thus demonstrated the usual effect afforded by a doubly refracting crystal plate in parallel polarised light, we may next illustrate two special cases, which will lead us up to the case of quartz once more. The first relates to a crystal belonging to the cubic system, which is theoretically singly refractive or “isotropic”; the second concerns a plate of a uniaxial crystal cut perpendicularly to the optic axis, the unique direction of single refraction of such a crystal. A plate of fluorspar affords a good example of the first case. When placed on the stage of the polariscope it shows no colour at all in polarised light, whatever be the position of the two Nicols with respect to each other, and the field remains dark when they are crossed, the crystal, in fact, behaving just like so much glass.