A word of caution, however, is here necessary, for natural mineral crystals are not infrequently formed under conditions of considerable strain, at high temperatures or under great pressure, as in the case of the diamond for instance. So that we must be careful to choose a normal and well-formed crystal of fluorspar for our experiment. This point may be well illustrated by placing on the stage a thick circular plate of glass, an inch or more in diameter, which has been purposely heated and then suddenly cooled in order to evoke such a condition of strain. Crossing the Nicols so as to obtain the dark field, there is at once produced on the screen a black cross and circular concentric spectrum-coloured rings, resembling with wonderful simulation the interference figure, shown in Fig. 72, Plate XIV., afforded by calcite or other uniaxial crystal in convergent polarised light. Artificial double refraction has been produced in the glass by the strained conditions, in a fashion concentrically symmetrical to the axis of the cylinder, an interference figure being afforded symmetrical about the axis of the cylinder as if it were an optic axis.
The diamond crystallises in the cubic system, in octahedra, hexakis octahedra, or hexakis tetrahedra, and should, therefore, theoretically be without effect on polarised light. Yet it is rare to find a diamond which does not show more or less colour in the dark field, owing to the condition of strain in which it exists. It is notorious that the strain is occasionally so great that a diamond explodes into powder shortly after removal from its enveloping matrix of blue clay. The author, by the great kindness of Sir William Crookes, was enabled to show on the screen, both in a lecture at the Royal Society and in the Evening Discourse to the British Association at Winnipeg, the images of ten magnificent large diamonds, natural, perfectly formed crystals uncut and unspoilt by the lapidary. They were mounted between two circular glass plates of the usual 1⅞ inches diameter, the diamonds being attached by balsam to one of them; each plate was held in a mahogany frame of 1⅝ inches circular aperture, the two frames being then attached face to face to form a single one, an enclosing cell, which could be placed on the rotating stage as an object-slide for the projection polariscope. The appearance of the diamonds on the screen in ordinary light is reproduced in Fig. 82, Plate XVI., as well as is possible without their natural colour, for while several of them are brilliantly colourless, others are tinted, one being a bright green diamond. On producing the dark field by crossing the analysing Nicol with respect to the polariser, the darkness was dispelled by brilliant polarisation colours, at once revealing the diamonds and outlining them clearly against the dark background. On rotating the analyser the colours changed in the usual manner of polarising objects, and bright colours were shown by all the diamonds even when the Nicols were parallel.
It is obvious, then, that both a transparent non-crystalline substance such as glass, and a cubic crystal, must be free from strain in order that it shall exhibit no colour in polarised light and, indeed, no polarisation effects whatever, and behave as an isotropic substance.
PLATE XVI.
Fig. 82.—Ten Diamonds exhibiting Natural Faces, mounted for the Lantern Polariscope, to show Polarisation Colours due to Internal Strain.
Fig. 121.—Doubly Refracting Liquid Crystals of Cholesteryl Acetate, projected on the Screen in the Act of Growth (see p. [281]).
Two Figures illustrating the Hardest (Diamond) and the Softest (Liquid Crystals) of Crystals.
The second special case to which attention may be called, that of a plate of an ordinary uniaxial crystal such as calcite, cut perpendicularly to the optic axis, is also obviously subject to the same proviso, that the crystal must be free from strain in order to exhibit the normal phenomena. Such a perfectly normal plate remains quite obscure in the dark field in parallel light, producing neither colour nor interference figure, even on rotation of the object stage with the crystal, in its own plane. For the light traverses the crystal along the optic axis, the axis of single refraction, and the vibrations occur with equal velocity in all directions perpendicular to it. Hence there is no division into two rays, one retarded behind the other on account of less velocity of vibration, and therefore no interference colour.
And now this leads us back to quartz, for this mineral is also uniaxial, and we will investigate in the same manner in parallel polarised light the plates of the mineral cut perpendicularly to the optic axis, which have already been referred to in connection with the experiments concerning the interference figures produced in convergent polarised light. Suppose we take first the large plate of quartz 7.5 mm. thick and over 2 inches in diameter. Placing it on the stage—instead of finding the dark field to be unaffected by the introduction of the plate, and to remain so on rotation of the latter in its own plane, as should theoretically be the case if quartz were a normal uniaxial crystal, and as calcite has been actually shown to do—we observe that it polarises in brilliant colour, the whole hexagonal outline of the plate, clearly focussed on the screen, being filled with an evenly brilliant violet tint, the tint of passage, just as the central part of the interference figure, within the innermost ring, had been coloured in the convergent light experiment with the same plate. The colour changes with the slightest rotation of either of the Nicols, passing into red for one direction of rotation and into blue and green when the Nicol is rotated in the other direction. The tint also alters when the section-plate is rotated about its vertical diameter, by rotating the upper adjustable part of the supporting column of the stage within its outer fixed tubular column; this latter change is equivalent to a thickening of the plate, the light beam having to traverse a longer path through the quartz during such oblique setting of the plate.
This colour is due to the same fact which produced colour in the central part of the interference figure, namely, the optical activity of quartz, the fact that the plane of vibration of a beam of plane polarised light transmitted along the axis of quartz is rotated to the right hand or to the left. The amount of this rotation is precisely equal, although opposite in direction, for the two varieties of quartz, but the rotation varies very considerably for different rays of the spectrum. It also varies directly proportionally to the thickness of the plate. A plate one millimetre thick cut perpendicularly to the axis rotates the plane of polarisation for red hydrogen light (C of the spectrum) to the extent of 17° 19′, for yellow D sodium light 21° 42′, and for greenish-blue F hydrogen light 32° 46′. The rotation is a maximum for plates perpendicular to the axis, and the effect is inappreciable in directions at right angles thereto. It is clearly due to the oppositely spiral winding of the regular-point-system of the crystal structure, round the direction of the optic axis, the trigonal axis of symmetry of the crystal, a structure which we have proved to be characteristic of quartz by the beautiful experiments with the helical piles of mica plates, absolutely reproducing the polarisation effects with quartz, as described in the last chapter.