Thus the greatest tournament of the year terminated with fine new laurels for the science and art of aviation; for the spectacular pilots and for the unseen men behind them—the scientific men in the laboratories, the designing rooms and the workshops. New standards had been established in speed, in altitude, in prowess and daring. In these elements, the spectators could hardly ask for a better exhibition. What is it to the onlooker to have an aëroplane go higher than the cumuli, since at that level a thousand feet makes no perceptible difference? What more could he wish in dexterity of manipulation and audacity in braving the elements? One thing more, doubtless, and that is, security and precision of flight in stormy weather. When these improvements shall have been effected much will have been added to both the sportive interest and practical utility of the aëroplane.
The most businesslike and crucial flying contest of the year was the famous “Circuit de l’Est,” organized by the Paris Matin. It was a competitive voyage over an irregular hexagonal course, lying generally northeast of Paris, and having its vertices at various cities to the east and north of the national capital. The main prize offered by the Matin was one hundred thousand francs for the first air man to complete the entire course, doing the first side of the hexagon on August 7th, and the succeeding sides in regular order on successive odd days of the month, the place and hour of starting each stage being assigned in advance. Various subsidiary prizes aggregating nearly a hundred thousand francs more, were available for meritorious performances at the various stages and stopping-places along the route. But there were also penalizations for those contestants who failed to start on schedule time and observe the rules of the course.
Fig. 41.—Map of the “Circuit de l’Est.”
The race began at Issy, near Paris, on August 7th, with eight aviators on the wing—Le Blanc, Aubrun, Leganeaux, Mamet, Lindpainter, Weyman. It terminated August 17th, headed by Alfred Le Blanc on his Blériot, and followed by Emile Aubrun on a Blériot, then by Weyman on a Farman, all three driven by Gnome engines actuating Chauvière propellers. Le Blanc completed the tour of six stages, covering an air-line distance of 488 miles, in 12 hours’ effective flying, or at the average rate of 40.6 miles per hour.
This long tour on schedule time over a rough and varied country in face of fog, wind and rain, was a most severe trial of the prowess and endurance of the brave pilots who had the hardiness and pertinacity to complete the voyage. Needless to add that it created unbounded enthusiasm among millions of people who witnessed the event, or read of it, and that the clocklike precision of the “grand raid” inspired new confidence in the practicability of the aëroplane.
A particularly impressive feature of the event was that many of its participants, the aviators, government officers, and members of the controlling committee, assembled at Issy and other posts of duty, not by rail, but by aëroplane, sailing across country from many directions and from great distances. This matter-of-fact procedure led many persons to believe that the period of mere demonstrations had approached its close, and that the epoch of practical utility was at hand; that after marveling so much at the aëroplane, with mingled faith and skepticism, people would next calmly turn it to practical use.
Though the progress in designing and constructing aëroplanes in 1910 did not keep pace with the wonderful advance in new records, still the inventors and manufacturers continued industriously to perfect the details of their best standard machines, and in a few instances to make radical innovations. The perfection in details of construction manifested itself in the public performance of aëroplanes, particularly in their greater reliability and their increased capabilities. The radical innovations were mainly experimental, and not generally exhibited, though none the less important for all that. Chief of these perhaps were the hydro-aëroplane developments of Fabre in France, and of Mr. Glenn H. Curtiss in America, which enabled the aviator to launch into the air directly from the water and to alight safely on the water, thus virtually adding a new and very important domain to the empire of dynamic flight.
Curtiss, in 1909, succeeded in landing his aëroplane safely on the water of Lake Keuka, first with sheet iron cylindrical floats under each wing, and a simple float well to the front of his protruding chassis, then with a hydroplane surface to the front as being more effective than the float. But when he attempted to glide up from the lake with this arrangement, he could not entirely clear the surface, though his aëroplane under the powerful thrust of her aërial screw, very nearly lifted from the water. Then he planned to use hydroplane floats, of hollow wing form, and of such size that they would buoy up the machine when at rest, and during motion would skim over the water like a skipping stone, till the biplane should acquire sufficient speed to rise by the dynamic reaction of the air. In the successful execution of this plan, however, he was anticipated by Fabre, who made the first successful flight from the water, on March 28th, 1910, at Martigues, France. But the Frenchman was not left to bear the palm alone. Early in the year 1911, Mr. Curtiss rose and landed successfully on the water at San Diego Bay, Cal., by means of a single float like a flatboat placed centrally under his biplane, seconded by small auxiliary floats at the wing ends. A full account of these valuable contributions to aviation is given in [Appendix V].