Between the inner and outer vortex the air is comparatively calm and the pressure is a maximum, with steepest gradient toward the center of the cyclone. Also the air is calm just at the axis of the vortex, while for some distance away its speed increases as the radius of its whirl, so that the central mass rotates practically as a solid column, thus still further lowering the pressure near the axis. This solidly rotating central column of air is sometimes called the core of the vortex.

High above the center of the cyclone, where perhaps the air is sucked downward, clarified by compression, then whirled outward, the sky is usually clear, or thinly fogged, while without this central patch are heavy clouds. The obscure or clear central part is called the “eye[66] of the storm.” Through this the cirrus clouds may sometimes be seen high above, either stationary or radiating away, if the vortex extends so high. Sailors on the deck of a vessel passing through a cyclone have often noticed the eye of the storm overhead, perhaps ten or twelve degrees in diameter, and with special clearness in the tropics. To the white, feathery cirrus clouds, scurrying away radially from the top of the vortex, they have given the name “plumes of the storm,” or “mares’ tails.” In sailing their vessel through the center of a cyclone, they have observed the circulatory motion of the winds and clouds, and frequently have found the deck covered or surrounded with cyclone sweepings, such as land and water birds, insects, butterflies, etc., brought into the quiet core of the vortex from the incurving winds beyond. Further details of the motion in a cyclone vortex are given as follows by Ferrel, §178:

“In Fig. 49 is given a graphic representation of the resultant motions and of the barometric pressures for both the surface of the earth and for some level high up in the atmosphere and above the neutral plane, where the motions in the vertical circulation are outward from the center. The solid circles represent isobars at the earth’s surface and the solid arrows the directions, and in some measure, by their different lengths, the relative velocities of the wind. The heavy circle represents the circle of greatest barometric pressure at the earth’s surface, say 765 mm., while the pressure of the outer border is 760 mm., and the dividing line between the cyclone and the anticyclonic gyrations. Within this limit the pressure diminishes to the center, and the gyrations are cyclonic, and the direction of the resultant of motion inclines in toward the center, but beyond that limit the gyrations are anticyclonic, and the direction of resultant motion inclines toward the outer border of these gyrations. The heavy dotted circle represents the circle of maximum pressure at some high level, and is much nearer the center than that at the earth’s surface. It is also the dividing line between the cyclonic and anticyclonic gyrations at that level. The dotted arrows indicate the directions and in some measure the relative velocities, of the wind at this level. The arrows in the cyclonic part represent the direction of the wind as declining outward, because the plane here considered is supposed to be above the neutral plane, where the radial component of motion is outward, but for any level below the neutral plane the inclination is still inward. The arrows are shorter above in the cyclonic part and longer in the anticyclonic part than they are at the earth’s surface, since the cyclonic gyratory velocities decrease and the anticyclonic increase with increase of altitude.

Fig. 49.—Velocity Diagram in Horizontal Section of a Cyclone.

“The upper part of the figure is a representation of a vertical section of the air, very much exaggerated in altitude, in which the solid curved line represents a section of an isobaric surface near the earth’s surface, say of 740 mm. barometric pressure. The lowest part corresponds with the center of the cyclone and the highest part with the heavy circle in the lower part of the figure, and the steepest gradients with the longest solid arrows, since the greater the gyratory velocities at the earth’s surface the greater the gradients, though they are not strictly proportional. The second dotted curved line from the top represents a section of the isobaric surface of high altitudes, in which the highest parts correspond with the heavy dotted circle below, since the highest pressure at all altitudes is very nearly where the cyclonic gyrations vanish and change to the anti-cyclonic. The depression here is smaller because the cyclonic area is smaller, and the gyratory velocities less, than at the earth’s surface. The upper dotted line belongs to an isobaric surface still higher, where the gyrations are supposed to be all anti-cyclonic, and here, consequently, the greatest pressure is in the center, as indicated by the curved line.

“As the interior of the whole cyclonic system is warmer than the exterior, and consequently the air less dense, the distances between the isobaric surfaces are necessarily greater in the interior than the exterior part, and so, however much the isobaric surface at or near the earth’s surface may be depressed by the cyclone gyration there, at a considerable altitude, if the temperature difference is great enough, it must become convex instead of concave.

“The track of any given particle of air in a cyclone, resulting from the vertical and gyratory circulation, is that of a large converging and ascending spiral in the lower part, but of a diverging and ascending spiral in the upper strata of the atmosphere, and the nearer the earth’s surface the more nearly horizontal is the motion, since the vertical component gradually decreases and vanishes at the surface.

“The whole energy of the system by which the inertia of the air and the frictional resistance are overcome and the motions maintained, is in the greater interior temperature and the temperature gradients, by which the circulation is maintained. This being kept up, the deflections and gyrations are merely the result of the modifying influence of the earth’s rotation, which is not a real force, since it does not give rise to kinetic energy, but merely to changes of direction.

“It must be borne in mind that the preceding is a representation of the motions and pressures of a cyclone resulting from perfectly regular conditions, in an atmosphere otherwise undisturbed, and having a uniform temperature, except so far as it is affected by the temperature disturbance arising from the cyclonic conditions. Accordingly results so regular are not to be found in Nature, but generally only rough approximations to them.

“Since the wind inclines less and less toward the center of the cyclone below the neutral plane and declines from the center above it, the upper currents above this plane in a cyclone are always from a direction, in the northern hemisphere, a little to the right of that of the lower currents, when not affected by abnormal circumstances.”

Observation of cyclones in Nature very well confirms the leading features set forth on theoretical grounds. If the vortex pass centrally over an observatory there is noted first a high barometer and calm air, attended perhaps by scurrying cirrus clouds; next a rapidly falling pressure and increasing wind, with dark clouds and precipitation, commonly accompanied by thunder and lightning; then the hushing of the storm to a dead calm, and low barometer and thinning or clearing of the clouds overhead; then a rising barometer with renewed winds in the reverse direction, and finally subsiding winds, rising barometer and clearing weather. These phenomena are the more definitely presented if the whirl is strong while its travel along the earth is slow. But owing to their progressive easterly motions, cyclones in the north have their moist hot southern masses elevated, chilled and precipitated on their eastern fronts and beyond, while their rear experiences the opposite action and is called the clearing side. Conversely in the tropics the westerly moving cyclones have cloudy and wet rears, because the easterly drift on high carries the precipitating masses toward the rear. The general hygrometric appearance of a centrally passing cyclone in middle latitude is thus described by Ferrel, §207:

“In the regular progression of a cyclone in the middle latitudes somewhat centrally over a place, the cloud and rain area of the front part, extending far toward the east, first passes over, occupying a half-day, or a day and more, and then the front part of the ring of dense cloud with a heavy shower of rainfall. After this there are indications of a clearing up, and even the sun may break through the cloud for an hour or two; but presently there is an apparent gathering and thickening of the cloud and a second shower. This is at the time of the passage of the rear side of the ring of denser cloud. After this there is the final clearing up.”

Except for special conditions, cyclones are never stationary, but drift along with the general march of the atmosphere, like dimpling eddies in a stately flowing river. In general, therefore, their trend is westward in lower latitudes, eastward in middle and higher latitudes, with a pace slow or swift according to the prevailing current. Notably also they have a poleward trend. Thus, if the path extends from tropic to temperate clime, it is frequently concave toward the east and sensibly parabolic in form. This is markedly true of those swift-whirling, small cyclones called hurricanes,[67] and particularly those vigorous ones blowing past the West Indies and the Philippines, and those that vex the Indian Ocean.

As to the speed of travel of cyclones, that may be judged, at least for northern latitudes, from the accompanying table, taken from Loomis,[68] and showing the average monthly rate of progression in miles per hour, of cyclone centers over the United States, the Atlantic Ocean and Europe. In general, beyond the tropics tall cyclones travel faster than short ones, owing to the faster drift of the higher strata.