“These ends could probably be attained very well by mounting two compound aëroplanes on a long backbone,[36] somewhat after the manner of the Hargrave cellular kites, and adding a compound rudder to the whole.” ... “If the inclination of the sustainers, front and back, could be altered independently, it might be feasible for a pilot to preserve the equilibrium of the machine even when its center of gravity was frequently shifted, as by the moving of passengers to and fro.[37]

At that date, 1893, an inventor doubtless could have secured a broad claim on a mechanism embodying the torsion-wing-and-double-rudder mechanism of control. But in those days aviation was pursued largely as a liberal study by scientific men who wished to hasten the advent of practical flight, by presenting important physical measurements and principles which could be freely employed by all. Accordingly the three-rudder system of control seems not to have been claimed by an inventor much before the close of the nineteenth century. Since then it has been patented in one form or other by many practical aviators, some endeavoring to claim the whole broad contrivance, others claiming more restricted devices.

The static principle of the torsion wing is a familiar one in elementary mechanics. It is this: a torque of given magnitude and direction has the same effect on a rigid body whatever its point of application. The longitudinal torque, or moment, may therefore be exerted by the wings, by suitable rudders, by forward planes, by any auxiliary planes, or fins, however placed or moved for the purpose. Accordingly there seems to be an unlimited variety of concrete patentable devices available to the inventor for securing impactual torque about the longitudinal axis, or either of the other two axes. But in planning such devices it is well to remember that the moment of a couple increases with its arm, so that in a wide aëroplane the wing tips may best furnish the torque; while in a high short-winged machine, vertical planes, fins, or rudders may give the desired longitudinal moment. Obviously such vertical guiding or controlling surfaces may be so placed as to tilt the machine toward the center of curvature of its path, at the same time opposing the centrifugal force, and exerting a torque about the vertical axis tending to steer the flyer along its path.[38]

The principle of projectile stability is another consideration of some importance in aviation, or more generally in all submerged navigation, whether of air or water. A submerged body has projectile stability if its nose tends always to forerun its centroid, and follow a steady course. A dart is a good example; a fish, a torpedo. Thus if a torpedo-shaped homogeneous solid be hurled in any manner through a fluid, obliquely or even tail foremost, it promptly turns its nose to the front and proceeds steadily along an even course; but if the body has not true dynamical balance, it may oscillate or gyrate, or flit about in the most erratic manner.

Projectile stability in a flyer, as in an arrow, may be attained by playing the centroid in or near the line of forward resistance, and well ahead of the side resistance. The reasons for this are manifest. If, however, this arrangement be neglected, a special damping, or controlling, device is required to preserve headlong and steady motion. In particular, the objections to placing the centroid too low were emphasized in the above quoted paper as follows:

“I have mentioned the advantage of placing the center of mass below the center of surface; this has also its objections. While the stability against inversion is increased, the stability against rocking is sacrificed. The aëroplane so constructed may not easily overturn; but it will sway to and fro with a pendular motion. This, when lateral, is very objectionable, when fore and aft it is fatal to uniform progress, as we shall see in studying the longitudinal stability of flying machines. We shall then see that the center of mass cannot be lowered with impunity.”

Of the various flyers and models thus far studied, some manifest fairly good, others very imperfect projectile stability. Many inventors have been more alert to the gravitational stability and safety of the parachute than to the kinetic stability and keen, direct flight of the arrow. Some of the most pretentious machines imitated the thistle down more nearly than the dart or swallow. But the exigencies of actual flight would easily rectify such imperfections of design.

Tractional balance also is a property of some importance in fluid navigation. This requires that the line of propulsive thrust coincide with the line of fluid resistance. It is a property, however, that inventors readily apprehend, and usually provide for.

In general a flyer is subject to four forces: weight, thrust, air pressure and inertia. When these balance about any axis the craft has equilibrium about that axis; when they balance about the three axes the craft is completely balanced, and preserves its orientation in flight. Devices for preserving this complete balance have already been described; as also provision for propulsion and sustentation, launching and landing safely.

Thus at the close of the nineteenth century all the essential principles and contrivances of pioneer flight were worked out, except one—a suitable motor. This was the real problem of the ages. The rest was easy by comparison. A light enduring motor, if available to the old time inventors, would have brought dynamic flight centuries ago. That only could have baffled Da Vinci, Cayley, Henson, Wenham and the long line of pioneer aviators. Eventually, of course, steam engines had come, endowed with ample power; but costly to build and wasteful to operate. The light automobile engine appeared in the latter nineties; promptly thereafter followed the dynamic flyer, the snow-winged herald of the twentieth century.