Another course of ideas must, however, be pursued in a work which proposes merely to give an exposition of what is known — of what may in the present state of our knowledge be regarded as certain, or as merely probable in a greater or lesser degree — and does not enter into a consideration of the proofs on which such results have been based. Here, therefore, we do not proceed from the subjective point of view of human interests. The terrestrial must be treated only as grand and free, uninfluenced by motives of proximity, social sympathy, or relative utility. A physical cosmography — a picture of the universe — does not begin, therefore, with the picture of the universe — does not begin, therefore, with the terrestrial, but with that which fills the regions of space. But as the sphere of contemplation contracts in dimension our perception of the richness of individual parts, the fullness of physical phenomena, and of the heterogeneous properties of matter becomes enlarged. From the regions in which we recognize ony the dominion of the laws of attraction, we descend to our own planet, and to the intricate play of terrestrial forces. The method here described for the delineation of nature is opposed to that which mst be pursued in establishing conclusive results. The one enumerates what the other demonstrates.
Man learns to know the external world through the organs of the senses. Phenomena of light proclaim the existence of matter in remotest space, and the eye is thus made the medium through which we may contemplate the universe. The discovery of telescopic vision more than two centuries ago, has transmitted to latest generations a power whose limits are as yet unattained.
The first and most general consideration of the Cosmos is that of the 'contents of space' — the distribution of matter, or of creation, as we are wont to designate the assemblage of all that is and ever will be developed. We see matter either agglomerated into rotating, revolving spheres of different density and size, or scattered through space in the form of self-luminous vapor. If we consider first the cosmical vapor dispersed in definite nebulous spots, its state of aggregation will p 84 appear constantly to vary, sometimes appearing separated into round or elliptical disks, single or in pairs, occasionally connected by a thread of light; while, at another time, these nebulae occur in forms of larger dimensions, and are either elongated, or variously branched or fan-shaped or appear like well-defined rings, including a dark interior. It is conjectured that these bodies are undergoing variously developed formative processes, as the cosmical vapor becomes condensed in conformity with the laws of attraction, either round one or more of the nuclei. Between two and three thousand of such unresolvable nebulae, in which the most powerful telescopes have hitherto been unable to distinguish the presence of stars, have been counted, and their positions determined.
The genetic evolution — that perpetual state of development which seems to affect this portion of the regions of space — has led philosophical observers to the discovery of the analogy existing among organic phenomena. As in our forests we see the same kind of tree in all the various stages of its growth, and are thus enabled to form an idea of progressive, vital development, so do we also in the great garden of the universe, recognise the most different phases of sidereal formation. The process of condensation, which formed a part of the doctrines of Anaximenes and of the Ionian School, appears to be going on before our eyes. This subject of investigation and conjecture is especially attractive to the imagination, for in the study of the animated circles of nature, and of the action of all the moving forces of the universe, the charm that exercises the most powerful influence on the mind is derived less from a knowledge of that which 'is' than from a perception of that which 'will be', even though the latter be nothing more than a new condition of a known material existence; for of actual creation, of origin, the beginning of existence from non-existence, we have no experience, and can therefore form no conception.
A comparison of the various causes influencing the development manifested by the greater or less degree of condensation in the interior of nebulae, no less than a successive course of direct observations, have led to the belief that changes of form have been recognized first in Andromeda, next in the constallation Argo, and in the isolated filamentous portion of the nebula in Orion. But want of uniformity in the power of the instruments employed, different conditions of our atmosphere, and other optical relations, render a part of the results invalid as historical evidence.
p 85 'Nebulous stars' must not be confounded either with irregularly-shaped nebulous spots, properly so called, whose separate parts have an unequal degree of brightness (and which may, perhaps, become concentrated into stars as their circumference contracts), nor with the so-called planetary nebulae, whose circular or slightly oval disks manifest in all their parts a perfectly uniform degree of faint light. 'Nebulous stars' are not merely accidental bodies projected upon a nebulous ground, but are a part of the nebulous matter constituting one mass with the body which it surrounds. The not unfrequently considerable magnitude of their apparent diameter, and the remote distance from which they are revealed to us, show that both the planetary nebulae and the nebulous stars must be of enormous dimensions. New and ingenious considerations of the different influence exercised by distance* on the intensity of light of a disk of appreciable diameter, and of a single self-luminous point, render it not improbable that the planetary nebulae are very remote nebulous stars, in which the difference between the central body and the surrounding nebulous covering can no longer be detected by our telescopic instruments.
[footnote] * The optical considerations relative to the difference presented by a single luminous point, and by a disk subtending an appreciable angle, in which the intensity of light is constant at every distance, are explained in Arago's 'Analyse des Travaux de Sir William Herschel' ('Annuaire du Bureau des Long.', 1842, p. 410-412, and 441).
The magnificent zones of the southern heavens, between 50 degrees and 80 degrees, are especially rich in nebulous stars, and in compressed unresolvable nebua e. The larger of the two Magellanic clouds, which circle round the starless, desert pole of the south, appears, according to the most recent researches,* as "a collection of clusters of stars, composed of globular clusters and nebulae of different magnitude, and of large nebulous spots
p 86 not resolvable, which, producing a general brightness in the field of view, form, as it were, the back-ground of the picture."
[footnote] *The two Magellanic clouds, Nubecula major and Nubecula minor, are very remarkable objects. The larger of the two is an accumulated mass of stars, and consists of clusters of stars of irregular form, either conical masses or nebulae of different magnitudes and degrees of condensation. This is interspersed with nebulous spots, not resolvable into stars, but which are probably 'star dust', appearing only as a general radiance upon the telescopic field of a twenty-feet reflector, and forming a luminous ground on which other objects of striking and indescribable form are scattered. In no other portion of the heavens are so many nebulous and stellar masses thronged together in an equally small space. Nubecula minor is much less beautiful, has more unresolvable nebulous light, while the stellar masses are fewer and fainter in intensity. — (From a letter of Sir John Herschel, Feldhuysen, Cape of Good Hope, 13th June, 1836.)