[footnote] *Littrow, 'Astronomie', 1825, bd.xi., 107. Mädler, 'Astron.', 1841, § 212. Laplace, 'Exp. du Syst. du Monde', p. 210.

The planets nearest the Sun, and consequently included in the inner group, are of more moderate size, denser, rotate more slowly and with nearly equal velocity (their periods of revolution being almost all about 24 hours), are less compressed at the poles, and with the exception of one, are without satellites. The exterior planets, which are further removed from the Sun, are very considerably larger, have a density five times less, more than twice as great a velocity in the period of their rotation round their axes, are more compressed at the poles, and if six satellites may be ascribed to Uranus, have a quantitative preponderance in the number of their attendant moons, which is as seventeen to one.

p 93 Such general considerations regarding certain characteristic properties appertaining to whole groups, can not, however, be applied with equal justice to the individual planets of every group, nor to the relations between the distances of the revolving planets from the central body, and their absolute size, density, period or rotation, eccentricity, and the inclination of their orbits and the axes. We know as yet of no inherent necessity, no mechanical natural law, similar to the one which teaches us that the squares of the periodic times are proportional to the cubes of the major axes, by which the above-named six elements of the planetary bodies and the form of their orbit are made dependent either on one another, or on their mean distance from the Sun. Mars is smaller than the Earth and Venus, although further removed from the Sun than these last-named planets, approaching most nearly in size to Mercury, the nearest planet to the Sun. Saturn is smaller than Jupiter, and yet much larger than Uranus. The zone of the telescopic planets, which have so inconsiderable a volume, immediately procede Jupiter (the greatest in size of any of the planetary bodies), if we consider them with regard to distance from the Sun; and yet the disks of these small asteroids, which scarcely admit of measurement, have an areal surface not much more than half that of France, Madagascar, or Borneo. However striking may be the extremely small density of all the colossal planets, which are furthest removed from the Sun, we are yet unable in this respect to recognize any regular succession.*

[footnote] *See Kepler, on the increasing density and volume of the planets in proportion with their increase of distance from the Sun, which is described as the densest of all the heavenly bodies; in the 'Epitome Astran. Copern. in' vii. 'libros digesta', 1618-1622, p. 420. Leibnitz also inclined to the opinions of Kepler and Otto von Guericke, that the planets increase in volume in proportion to their increase of distance from the Sun. See his letter to the Magdeburg Burgomaster (Mayence, 1671), in Leibnitz, 'Deutschen Schriften, herausg. von Guhrauer', th. i., 264.

Uranus appears to be denser than Saturn, even if we adopt the smaller mass, 1/24605, assumed by Lamont; and, notwithstanding the inconsiderable difference of density observed in the innermost planetary group,* we find both Venus and Mars less dense than the Earth, which lies between them.

[footnote] *On the arrangement of masses, see Encke, in Schum., 'Astr. Nachr', 1843 Nr. 488, 114.

The time of rotation certainly diminishes with increasing solar distance, but yet it is greater in Mars than in the Earth, and in Saturn than in Jupiter. The elliptic p 94 orbits of Juno, Pallas, and Mercury have the greatest degree of eccentricity, and Mars and Venus, which immediately follow each other, have the least. Mercury and Venus exhibit the same contrasts that may be observed in the four smaller planets, or asteroids, whose paths are so closely interwoven.

The eccentriciities of Juno and Pallas are very nearly identical, and reach three times as great as those of Ceres and Vesta. The same may be said of the inclination of the orbits of the planets toward the plane of projection of the ecliptic, or in the position of their axes of rotation with relation to their orbits, a position on which the relations of climate, seasons of the year, and length of the days depend more than on eccentricity. Those planets that have the most elongated elliptic orbits, as Juno, Pallas, and Mercury, have also, although not to the same degree their orbits most strongly inclined toward the ecliptic. Pallas has a comet-like inclination nearly twenty-six times greater than that of Jupiter, while in the little planet Vesta, which is so near Pallas, the angle of inclination scarcely by six times exceeds that of Jupiter. An equally irregular succession is observed in the position of the axes of the few planets (four or five) whose planes of rotation we know with any degree of certainty. It would appear from the position of the satellites of Uranus, two of which, the second and fourth, have been recently observed with certainty, that the axis of this, the outermost of all the planets is scarcely inclined as much as 11 degrees toward the plane of its orbit, while Saturn is placed between this planet, whose axis almost coincides with the plane of its orbit, and Jupiter, whose axis of rotation is nearly perpendicular to it.

In this enumeration of the forms which compose the world in space, we have delineated them as possessing an actual existence, and not as objects of intellectual contemplation, or as mere links of a mental and causal chain of connection. The planetary system, in its relations of absolute size and relative position of the axes, density, time of rotation, and different degrees of eccentricity of the orbits, does not appear to offer to our apprehension any stronger evidence of a natural necessity than the proportion observed in the distribution of land and water on the Earth, the configuration of continents, or the height of mountain chains. In these respects we can discover no common law in the regions of space or in the inequalities of the earth's crust. They are 'facts' in nature that have arisen from the conflict of manifold forces acting under unknown p 95 conditions, although man considers as 'accidental' whatever he is unable to explain in the planetary formation on purely genetic principles. If the planets have been formed out of separate rings of vaporous matter revolving round the Sun, we may conjecture that the different thickness, unequal density, temperature, and electro-magnetic tension of these rings may have given occasion to the most various agglomerations of matter, in the same manner as the amount of tangential velocity and small variations in its direction have produced so great a differencein the forms and inclinations of the elliptic orbits. Attractions of mass and laws of gravitation have no doubt exercised an influence here, no less than in the geognostic relations of the elevations of continents; but we are unable from the present forms to draw any conclusions regarding the series of conditions through which they have passed. Even the so-called law of the distances of the planets from the Sun, the law of progression (which led Kepler to conjecture the existence of a planet supplying the link that was wanting in the chain of connection between Mars and Jupiter), has been found numerically inexact for the distances between Mercury, Venus, and the Earth, and a variance with the conception of a series, owing to the necessity for a supposition in the case of the first member.

The hitherto disscovered principal planets that revolve round our Sun are attended certainly by fourteen, and probably by eighteen secondary planets (moons or satellites). The principal planets are, therefore, themselves the central bodies of subordinate systems. We seem to recognize in the fabric of the universe the same process of arrangement so frequently exhibited in the development of organic life, where we find in the manifold combinations of groups of plants or animals the same typical form repeated in the 'subordinate classes'. The secondary planets or satellites are more frequent in the external region of the planetary system, lying beyond the intersecting orbits of the smaller planets or asteroids; in the inner region none of the planets are attended by satellites, with the exception of the Earth, whose moon is relatively of great magnitude, since its diameter is equal to a fourth of that of the Earth, while the diameter of the largest of all known secondary planets — the sixth satellite of Saturn — is probably about one seventeenth, and the largest of Jupiter's moons, the third, only about one twenty-sixth part that of the primary planet or central body. The planets which are attended by the largest number of satellites are most remote from the Sun, p 96 and are at the same time the largest, most compressed at the poles, and the least dense. According to the most recent measurements of Mädler, Uranus has a greater planetary compression than any other of the planets, viz., 1/9.92d. In our Earth and her moon, whose mean distance from one another amounts to 207,200 miles, we find that the differences of mass* and diameter between the two are much less considerable than are usually observed to exist between the principal planets and their attendant satellites, or between bodies of different orders in the solar system.