This position of our solar system, and the form of the whole discoidal stratum, have been inferred from sidereal scales, that is to say, from that method of counting the stars to which I have already alluded, and which is based upon the equidistant subdivision of the telescopic field of view. The relative depth of the stratum in all directions is measured by the greater or smaller number of stars appearing in each division. These divisions give the length of the ray of vision in the same manner as we measure the depth to which the plummet has been thrown, before it reaches the bottom, although in the case of a starry stratum there can not, correctly speaking, be any idea of depth, but merely of outer limits. In the direction of the longer axis, where the stars lie behind one another, the more remote ones appear closely crowded together, united, as it were, by a milky-white radiance or luminous vapor, and are perspectively grouped, encircling as in a zone, the visible vault of heaven. This narrow and branched girdle, studded with a radiant light, and here and there interrupted by dark spots, deviates only by a few degrees from forming a perfect large circle round the concave sphere of heaven, owing to our being near the center of the large starry cluster, and almost on the plane of the Milky Way. If our planetary system were far 'outside' this cluster, the Milky Way would appear to telescopic vision as a ring, and at a still greater distance as a resolvable discoidal nebula.
Among the many self-luminous moving suns, erroneously called 'fixed stars', which constitute our cosmical island, our own sun is the only one known by direct observation to be a 'central body' in its relations to spherical agglomerations of matter directly depending upon and revolving round it, either in the form of planets, comets, or aerolite asteroids. As far as we have hitherto been able to investigate 'multiple' stars (double stars or suns), these bodies are not subject, with respect to relative motion and illumination, to the same planetary dependence that characterizes our own solar system. Two or more self-luminous bodies, whose planets and moon, if such exist, have hitherto escaped our telescopic powers of vision, certainly revolve around one common center of gravity; but this is in a portion of space which is probably occupied merely by unagglomerated matter or cosmical vapor, while in our system p 90 the center of gravity is often comprised within the innermost limits of a 'visible' central body. If, therefore, we regard the Sun and the Earth, or the Earth and the Moon, as double-stars, and the whole of our planetary solar system as a multiple cluster of stars, the analogy thus suggested must be limited to the universality of the laws of attraction in different systems, being alike applicable to the independent processes of light and to the method of illumination.
For the generalization of cosmical views, corresponding with the plan we have proposed to follow in giving a delineation of nature or of the universe, the solar system to which the Earth belongs may be considered in a two-fold relation: first, with respect to the different classes of individually agglomerated matter, and the relative size, conformation, density, and distance of the heavenly bodies of this system; and secondly, with reference to other portions of our starry cluster, and of the changes of position of its central body, the Sun.
The solar system, that is to say, the variously-formed matter circling round the Sun, consists, according to the present state of our knowledge of 'eleven primary planets',* eighteen satellites p 91 or secondary planets, and myriads of comets, three of which, known as the "planetary comets," do not pass beyond the narrow limits of the orbits described by the principal planets.
[footnote] * (Since the publication of Baron Humboldt's work in 1845, several other planets have been discovered, making the number of those belonging to our planetary system 'sixteen' instead of 'eleven'. Of these, Astrea, Hebe, Flora, and Iris are members of the remarkable group of asteroids between Mars and Jupiter. Astrea and Hebe were discovered by Hencke at Driesen, the one in 1846 and the other in 1847; Flora and Iris were both discovered in 1847 by Mr. Hind, at the South Villa Observatory, Regent's Park. It would appear from the latest determinations of their elements, that the small planets have the following order with respect to mean distance from the Sun: Flora, Iris, Vesta, Hebe, Astrea, Juno, Ceres, Pallas. Of these, Flora has the shortest period (about 3 1/4 years). The planet Neptune, which, after having been predicted by several astronomers, was actually observed on the 25th of September, 1846, is situated on the confines of our planetary system beyond Uranus. The discovery of this planet is not only highly interesting from the importance attached to it as a question of science, but also from the evidence it affords of the care and unremitting labor evinced by modern astronomers in the investigation and comparison of the older calculations, and the ingenious application of the results thus obtained to the observation of new facts. The merit of having paved the way for the discovery of the planet Neptune is due to M. Bouvard, who, in his persevering and assiduous efforts to deduce the entire orbit of Uranus from observations made during the forty years that succeeded the discovery of that planet in 1781, found the results yielded by theory to be at variance with fact, in a degree that had no parallel in the history of astronomy. This startling discrepancy, which seemed only to gain additional weight from every attempt made by M. Bouvard to correct his calculations, led Leverrier, after a careful modification of the tables of Bouvard, to establish the proposition that there was "a formal incompatibility between the observed motions of Uranus and the hypothesis that he was acted on 'only' by the Sun and known planets, according to the law of universal gravitation." Pursuing this idea, Leverrier arrived at the conclusion that the disturbing cause must be a 'planet', and finally, after an amount of labor that seems perfectly overwhelming, he, on the 31st of August, 1846, laid before the French Institute a paper, in which he indicated the exact spot in the heavens where this new planetary body would be found, giving the following data for its various elements: mean distance from the Sun, 36.154 times that of the Earth; period of revolution, 217.387 years; mean long., Jan. 1st, 1847, 318 degrees 47'; mass, 1/9300th; heliocentric long., Jan 1st1847, 326 degrees 32'. Essential difficulties still intervened, however, and as the remoteness of the planet rendered it improbable that its disk would be discernible by any telescopic instrument, no other means remained for detecting the suspected body but its planetary motion, which could only be ascertained by mapping, after every observation, the quarter of the heavens scanned, and by a comparison of the various maps. Fortunately for the verification of Leverrier's predictions, Dr. Bremiker had just completed a map of the precise region in which it was expected the new planet would apper, this being one of a series of maps made for the Academy of Berlin, of the small stars along the entire zodiac. By means of this valuable assistance, Dr. Galle, of the Berlin Observatory, was led, on the 25th of September, 1846, by the discovery of a star of the eighth magnitude, not recorded in Dr. Bremiker's map, to make the first observation of the planet predicted by Leverrier. By a singular coincidence, Mr. Adams, of Cambridge, had predicted the appearance of the planet simultaneously with M. Leverrier; but by the concurrence of several circumstances much to be regretted, the world at large were not made acquainted with Mr. Adams's valuable discovery until subsequently to the period at which Leverrier published his observations. As the data of Leverrier and Adams stand at present, there is a discrepancy between the predicted and the true distance, and in some other elements of the planet; it remains therefore, for these or future astronomers to reconcile theory with fact, or perhaps, as in the case of Uranus, to make the new planet the means of leading to yet greater discoveries. It would appear from the most recent observations, that the mass of Neptune, instead of being, as at first stated, 1/9300th, is only about 1/23000th that of the Sun, while its periodic time is now given with a greater probability at 166 years, and its mean distance from the Sun nearly 30. The planet appears to have a ring, but as yet no accurate observations have been made regarding its system of satellites. See 'Trans. Astron. Soc.', and 'The Planet Neptune', 1848, by J. P. Nicholl.) — Tr.
We may, with no incondsiderable degree of probability, include within the domain of our Sun, in the immediate sphere of its central force, a rotating ring of vaporous matter, lying probably between the orbits of Venus and Mars, but certainly beyond that of the Earth,* which appears to us in p 92 a pyramidal form, and is known as the 'Zodiacal Light'; and a host of very small asteroids, whose orbits either intersect, or very nearly approach, that of our earth, and which present us with the phenomena of aerolites and falling or shooting stars.
[footnote] * "If there should be molecules in the zones diffused by the atmosphere of the Sun of too volatile a nature either to combine with one another or with the planets, we must suppose that they would, in circling round that luminary, present all the appearances of zodiacal light, without opposing any appreciable resistance to the different bodies composing the planetary system, either owing to their extreme rarity, or to the similarity existing between their motion and that of the planets with which they come in contact." — Laplace, 'Expos. du Syst. du Monde' (ed. 5), p. 415.
When we consider the complication of variously-formed bodies which revolve round the Sun in orbits of such dissimilar eccentricity—although we may not be disposed, with the immortal author of the 'Mecanique Celeste', to regard the largr number of comets as nebulous stars, passing from one central system to another,* we yet can not fail to acknowledge that the planetary system, especially so called (that is, the group of heavenly bodies which, together with their satellites, revolve with but slightly eccentric orbits round the Sun), constitutes but a small portion of the whole system with respect to individual numbers, if not to mass.
[footnote] *Laplace, 'Exp. du Syst. du Monde', p. 396, 414.
It has been proposed to consider the telescopic planets, Vesta, Juno, Ceres, and Pallas, with their more closely intersecting, inclined, and eccentric orbits, as a zone of separation, or as a middle group in space; and if this view be adopted, we shall discover that the interior planetary group (consisting of Mercury, Venus, the Earth, and Mars) presents several very striking contrasts* when compared with the exterior group, comprising Jupiter, Saturn, and Uranus.