The reduction is performed as follows: The sulphide of arsenic is ground in a small mortar, previously warmed, together with 12 parts of a mixture consisting of 3 parts of carbonate of soda and 1 part of cyanide of potassium, both salts being perfectly dry. The powder thus obtained is placed upon a piece of paper rolled in the form of a gutter, and introduced into the reduction tube. The latter is then turned half round its axis, so as to cause the mixture to fall in de without soiling the other parts of the tube. The paper is now withdrawn and the apparatus mounted. Upon opening the clamp g, and strongly heating the mixture by either the flame of a gas or an alcohol lamp, a mirror-like ring of metallic arsenic is deposited at h, if this poison be present in the substances under examination. When the coating is too minute to permit of perfect identification, it should be driven by heat to a thinner part of the tube; in this way it is rendered easily visible, being condensed upon a smaller space.
The above process possesses the advantage of not allowing arsenic to be confounded with any other body; it also permits of a quantitative estimation of the poison present. For this purpose, it is only necessary to previously weigh the watch-crystal, upon which the ammoniacal solution of sulphide of arsenic was evaporated, and to determine its increased weight after the evaporation; the difference of the two weighings multiplied by 0.8049, gives the corresponding weight of arsenious acid, and by 0.6098, the weight of the corresponding amount of metallic arsenic.
MARSH'S TEST.
Marsh's test is based upon the reduction of arsenious and arsenic acids by nascent hydrogen, and the subsequent transformation of these bodies into water and arsenetted hydrogen, a compound from which the arsenic can be readily isolated. When pure hydrogen is generated in a flask having two openings, one of which is provided with a perforated cork through which a safety-tube passes, the other with a tube bent at a right angle and drawn out to a small point at the free extremity, the evolved gas, if ignited, burns with a pale non-luminous flame. The air should be completely expelled from the apparatus before igniting the gas. Upon bringing a cold porcelain saucer in contact with the point of the flame, only water is formed. If, however, a small quantity of a solution containing arsenious or arsenic acids is introduced into the apparatus by means of the safety-tube, arsenetted hydrogen is produced. This gas burns with a bright flame, yielding fumes of arsenious acid. In case a large amount of the poison is present, it can be recognized by the appearance of the flame, and by inclining a glass tube towards it upon which a portion of the arsenious acid becomes deposited. These indications are, however, not distinguishable in presence of only a small amount of arsenic, and the following distinctive properties of the gas should be verified:
1st. At an elevated temperature it is decomposed into its two constituent elements.
Fig. 5.
Fig. 6.
2nd. The combustibility of the constituents differs: the arsenic being less combustible than the hydrogen, begins to burn only after the complete consumption of the latter body has taken place. For this reason the flame (Fig. 5) is composed of a dark portion O and a luminous portion I, which surrounds the first. The maximum temperature exists in O at the point of union of the two parts of the flame. Owing to an insufficient supply of oxygen, the complete combustion of the arsenic in this part of the flame is impossible, and if it be intersected by the cold surface A B, that body is deposited as a brown spot, possessing a metallic lustre. The metallic deposit originates, therefore, from the decomposition of the arsenetted hydrogen by heat and from its incomplete combustion. If the spot is not large, it fails to exhibit a metallic lustre; an experienced chemist, however, will be able to identify it by the aid of proper tests. Spots are sometimes obtained when the substance under examination does not contain the least trace of arsenic. These may be caused by antimony or by a portion of the zinc salt in the generating flask being carried over by the gaseous current. This difficulty is remedied by giving the apparatus the form represented in Fig. 6. A is the flask in which the gas is generated. The delivery-tube I connects with a second tube H, filled with asbestus or cotton; this is united by means of a cork with a third tube C, made of Bohemian glass. The latter tube is quite long, and terminates in a jet at its free end, enclosed in tin-foil;[C] it passes through the sheet-iron furnace R, supported upon G. The screen D protects the portion D E of the tube C from the heat. The gas disengaged is ignited at E and the porcelain dish P is held by the hand in contact with the flame. The apparatus being mounted, zinc, water and some sulphuric acid are placed in the generating flask,[D] and the solution containing arsenious acid added: the evolution of gas commences immediately. The tube H serves to retain any liquids that may be held suspended. The gas then passes through the part C D of the tube C, which is heated by placing a few live coals upon the furnace R. The greater portion of the arsenetted hydrogen is decomposed here, and is deposited on the cold part of the tube, in a mirror-like ring. The small quantity of gas that escapes decomposition, if ignited at E, produces a metallic spot on the dish P. In order to determine that the spots are due to the presence of arsenic, and not produced by antimony, the following tests should be applied: