1. The color of the spots is distinctive: arsenical spots are brown and exhibit a metallic lustre, whereas those originating from antimony possess a black color, especially near their border. This difference is, however, not perceptible when the deposits have a large surface.
2. If the mirror be arsenical, it is readily volatilized from one part of the tube to another, when the latter is heated, and a current of hydrogen, or carbonic acid gas made to pass through it. Spots that are due to the presence of antimony are much less volatile.
3. If the tube is held in an inclined position so that a current of air traverses it, and the part containing the arsenical mirror heated, the arsenic oxidizes and arsenious acid is sublimed and deposited higher up in the tube in the form of a ring, which exhibits octahedral crystals when examined with a magnifying glass. This ring should be further tested as follows:
a. If it is dissolved in a drop of hydrochloric acid and a solution of sulphuretted hydrogen added, a yellow precipitate of sulphide of arsenic is formed. This compound is soluble in ammonia and in alkaline sulphides, but insoluble in hydrochloric acid.
b. If the ring is dissolved in pure water and an ammoniacal solution of sulphate of copper added, a beautiful green precipitate ("Scheele's green"), consisting of arsenite of copper, is produced.
4. When produced by arsenic the spots are soluble in nitric acid, and upon evaporating the solution so obtained to dryness, a residue of arsenic acid, which is easily soluble in water, remains. If an ammoniacal solution of nitrate of silver is added to the aqueous solution of the residue, a brick-red precipitate is produced. Spots consisting of antimony give, when treated with nitric acid, a residue of an intermediate oxide, insoluble in water.
5. Upon treating the spots with a drop of solution of sulphide of ammonium, the sulphide of the metal present is formed: if sulphide of arsenic is produced its properties, as enumerated above, can be recognized. It may be added that the sulphide of antimony formed is soluble in hydrochloric acid, and possesses an orange red color, whereas sulphide of arsenic is yellow.
6. When spots originating from arsenic are treated with a solution of hypochlorite of soda (prepared by passing chlorine into solution of carbonate of soda), they are immediately dissolved; if, on the other hand, they are produced by antimony, they remain unaltered by this treatment.
Such are the properties exhibited by soluble compounds of arsenic when treated by Marsh's process; the following precautions are, however, necessary when this test is made use of in medico-legal examinations.
1. If small white gritty particles, resembling arsenious acid, are discovered in the stomach or intestines, they are directly introduced into Marsh's apparatus. When this is not the case, the destruction of the organic matter is indispensable even though, instead of the organs themselves, the contents of the alimentary canal are taken. In the latter instance, the solids are separated from the fluids present by filtration, the solution evaporated to dryness and the residue united with the solid portion; the organic matter is then destroyed by one of the methods previously described. In the special case of arsenic, the separation of the poison from the accompanying organic materials can be accomplished by a process not yet mentioned which may prove to be of service. The suspected substances are distilled with common salt and concentrated sulphuric acid. By this operation the arsenic is converted into a volatile chloride which distils over. The poison is isolated by treating this compound with water, by which it is decomposed into hydrochloric and arsenious acids. We must give preference, however, to the method by means of chlorate of potassa and hydrochloric acid.