The omission of physiologists, other than Harvey, also requires explanation. There were, of course, great advances in biology within the century, chiefly associated with Italy and the University of Padua. But my purpose is to trace the philosophic outlook, derived from science and presupposed by science, and to estimate some of its effects on the general climate of each age. Now the scientific philosophy[philosophy] of this age was dominated by physics; so as to be the most obvious rendering, in terms of general ideas, of the state of physical knowledge of that age and of the two succeeding centuries. As a matter of fact, these concepts are very unsuited to biology; and set for it an insoluble problem of matter and life and organism, with which biologists are now wrestling. But the science of living organisms is only now coming to a growth adequate to impress its conceptions upon philosophy. The last half century before the present time has witnessed unsuccessful attempts to impress biological notions upon the materialism of the seventeenth century. However this success be estimated, it is certain that the root ideas of the seventeenth century were derived from the school of thought which produced Galileo, Huyghens and Newton, and not from the physiologists of Padua. One unsolved problem of thought, so far as it derives from this period, is to be formulated thus: Given configurations of matter with locomotion in space as assigned by physical laws, to account for living organisms.
My discussion of the epoch will be best introduced by a quotation from Francis Bacon, which forms the opening of Section (or ‘Century’) IX of his Natural History, I mean his Silva Silvarum. We are told in the contemporary memoir by his chaplain, Dr. Rawley, that this work was composed in the last five years of his life, so it must be dated between 1620 and 1626. The quotation runs thus:
“It is certain that all bodies whatsoever, though they have no sense, yet they have perception; for when one body is applied to another, there is a kind of election to embrace that which is agreeable, and to exclude or expel that which is ingrate; and whether the body be alterant or altered, evermore a perception precedeth operation; for else all bodies would be like one to another. And sometimes this perception, in some kind of bodies, is far more subtile than sense; so that sense is but a dull thing in comparison of it: we see a weatherglass will find the least difference of the weather in heat or cold, when we find it not. And this perception is sometimes at a distance, as well as upon the touch; as when the loadstone draweth iron; or flame naphtha of Babylon, a great distance off. It is therefore a subject of a very noble enquiry, to enquire of the more subtile perceptions; for it is another key to open nature, as well as the sense; and sometimes better. And besides, it is a principal means of natural divination; for that which in these perceptions appeareth early, in the great effects cometh long after.”
There are a great many points of interest about this quotation, some of which will emerge into importance in succeeding lectures. In the first place, note the careful way in which Bacon discriminates between perception, or taking account of, on the one hand, and sense, or cognitive experience, on the other hand. In this respect Bacon is outside the physical line of thought which finally dominated the century. Later on, people thought of passive matter which was operated on externally by forces. I believe Bacon’s line of thought to have expressed a more fundamental truth than do the materialistic concepts which were then being shaped as adequate for physics. We are now so used to the materialistic way of looking at things, which has been rooted in our literature by the genius of the seventeenth century, that it is with some difficulty that we understand the possibility of another mode of approach to the problems of nature.
In the particular instance of the quotation which I have just made, the whole passage and the context in which it is embedded, are permeated through and through by the experimental method, that is to say, by attention to ‘irreducible and stubborn facts’, and by the inductive method of eliciting general laws. Another unsolved problem which has been bequeathed to us by the seventeenth century is the rational justification of this method of Induction. The explicit realisation of the antithesis between the deductive rationalism of the scholastics and the inductive observational methods of the moderns must chiefly be ascribed to Bacon; though, of course, it was implicit in the mind of Galileo and of all the men of science of those times. But Bacon was one of the earliest of the whole group, and also had the most direct apprehension of the full extent of the intellectual revolution which was in progress. Perhaps the man who most completely anticipated both Bacon and the whole modern point of view was the artist Leonardo Da Vinci, who lived almost exactly a century before Bacon. Leonardo also illustrates the theory which I was advancing in my last lecture, that the rise of naturalistic art was an important ingredient in the formation of our scientific mentality. Indeed, Leonardo was more completely a man of science than was Bacon. The practice of naturalistic art is more akin to the practice of physics, chemistry and biology than is the practice of law. We all remember the saying of Bacon’s contemporary, Harvey, the discoverer of the circulation of the blood, that Bacon ‘wrote of science like a Lord Chancellor.’ But at the beginning of the modern period Da Vinci and Bacon stand together as illustrating the various strains which have combined to form the modern world, namely, legal mentality and the patient observational habits of the naturalistic artists.
In the passage which I have quoted from Bacon’s writings there is no explicit mention of the method of inductive reasoning. It is unnecessary for me to prove to you by any quotations that the enforcement of the importance of this method, and of the importance, to the welfare of mankind, of the secrets of nature to be thus discovered, was one of the main themes to which Bacon devoted himself in his writings. Induction has proved to be a somewhat more complex process than Bacon anticipated. He had in his mind the belief that with a sufficient care in the collection of instances the general law would stand out of itself. We know now, and probably Harvey knew then, that this is a very inadequate account of the processes which issue in scientific generalisations. But when you have made all the requisite deductions, Bacon remains as one of the great builders who constructed the mind of the modern world.
The special difficulties raised by induction emerged in the eighteenth century, as the result of Hume’s criticism. But Bacon was one of the prophets of the historical revolt, which deserted the method of unrelieved rationalism, and rushed into the other extreme of basing all fruitful knowledge upon inference from particular occasions in the past to particular occasions in the future. I do not wish to throw any doubt upon the validity of induction, when it has been properly guarded. My point is, that the very baffling task of applying reason to elicit the general characteristics of the immediate occasion, as set before us in direct cognition, is a necessary preliminary, if we are to justify induction; unless indeed we are content to base it upon our vague instinct that of course it is all right. Either there is something about the immediate occasion which affords knowledge of the past and the future, or we are reduced to utter scepticism as to memory and induction. It is impossible to over-emphasise the point that the key to the process of induction, as used either in science or in our ordinary life, is to be found in the right understanding of the immediate occasion of knowledge in its full concreteness. It is in respect to our grasp of the character of these occasions in their concreteness that the modern developments of physiology and of psychology are of critical importance. I shall illustrate this point in my subsequent lectures. We find ourselves amid insoluble difficulties when we substitute for this concrete occasion a mere abstract in which we only consider material objects in a flux of configurations in time and space. It is quite obvious that such objects can tell us only that they are where they are.
Accordingly, we must recur to the method of the school-divinity as explained by the Italian medievalists whom I quoted in the first lecture. We must observe the immediate occasion, and use reason to elicit a general description of its nature. Induction presupposes metaphysics. In other words, it rests upon an antecedent rationalism. You cannot have a rational justification for your appeal to history till your metaphysics has assured you that there is a history to appeal to; and likewise your conjectures as to the future presuppose some basis of knowledge that there is a future already subjected to some determinations. The difficulty is to make sense of either of these ideas. But unless you have done so, you have made nonsense of induction.
You will observe that I do not hold Induction to be in its essence the derivation of general laws. It is the divination of some characteristics of a particular future from the known characteristics of a particular past. The wider assumption of general laws holding for all cognisable occasions appears a very unsafe addendum to attach to this limited knowledge. All we can ask of the present occasion is that it shall determine a particular community of occasions, which are in some respects mutually qualified by reason of their inclusion within that same community. That community of occasions considered in physical science is the set of happenings which fit on to each other—as we say—in a common space-time, so that we can trace the transitions from one to the other. Accordingly, we refer to the common space-time indicated in our immediate occasion of knowledge. Inductive reasoning proceeds from the particular occasion to the particular community of occasions, and from the particular community to relations between particular occasions within that community. Until we have taken into account other scientific concepts, it is impossible to carry the discussion of induction further than this preliminary conclusion.
The third point to notice about this quotation from Bacon is the purely qualitative character of the statements made in it. In this respect Bacon completely missed the tonality which lay behind the success of seventeenth century science. Science was becoming, and has remained, primarily quantitative. Search for measurable elements among your phenomena, and then search for relations between these measures of physical quantities. Bacon ignores this rule of science. For example, in the quotation given he speaks of action at a distance; but he is thinking qualitatively and not quantitatively. We cannot ask that he should anticipate his younger contemporary Galileo, or his distant successor Newton. But he gives no hint that there should be a search for quantities. Perhaps he was misled by the current logical doctrines which had come down from Aristotle. For, in effect, these doctrines said to the physicist ‘classify’ when they should have said ‘measure.’