By the end of the century physics had been founded on a satisfactory basis of measurement. The final and adequate exposition was given by Newton. The common measurable element of mass was discerned as characterising all bodies in different amounts. Bodies which are apparently identical in substance, shape, and size have very approximately the same mass: the closer the identity, the nearer the equality. The force acting on a body, whether by touch or by action at a distance, was [in effect] defined as being equal to the mass of the body multiplied by the rate of change of the body’s velocity, so far as this rate of change is produced by that force. In this way the force is discerned by its effect on the motion of the body. The question now arises whether this conception of the magnitude of a force leads to the discovery of simple quantitative laws involving the alternative determination of forces by circumstances of the configuration of substances and of their physical characters. The Newtonian conception has been brilliantly successful in surviving this test throughout the whole modern period. Its first triumph was the law of gravitation. Its cumulative triumph has been the whole development of dynamical astronomy, of engineering, and of physics.

This subject of the formation of the three laws of motion and of the law of gravitation deserves critical attention. The whole development of thought occupied exactly two generations. It commenced with Galileo and ended with Newton’s Principia; and Newton was born in the year that Galileo died. Also the lives of Descartes and Huyghens fall within the period occupied by these great terminal figures. The issue of the combined labours of these four men has some right to be considered as the greatest single intellectual success which mankind has achieved. In estimating its size, we must consider the completeness of its range. It constructs for us a vision of the material universe, and it enables us to calculate the minutest detail of a particular occurrence. Galileo took the first step in hitting on the right line of thought. He noted that the critical point to attend to was not the motion of bodies but the changes of their motions. Galileo’s discovery is formularised by Newton in his first law of motion:—“Every body continues in its state of rest, or of uniform motion in a straight line, except so far as it may be compelled by force to change that state.”

This formula contains the repudiation of a belief which had blocked the progress of physics for two thousand years. It also deals with a fundamental concept which is essential to scientific theory; I mean, the concept of an ideally isolated system. This conception embodies a fundamental character of things, without which science, or indeed any knowledge on the part of finite intellects, would be impossible. The ‘isolated’ system is not a solipsist system, apart from which there would be nonentity. It is isolated as within the universe. This means that there are truths respecting this system which require reference only to the remainder of things by way of a uniform systematic scheme of relationships. Thus the conception of an isolated system is not the conception of substantial independence from the remainder of things, but of freedom from casual contingent dependence upon detailed items within the rest of the universe. Further, this freedom from casual dependence is required only in respect to certain abstract characteristics which attach to the isolated system, and not in respect to the system in its full concreteness.

The first law of motion asks what is to be said of a dynamically isolated system so far as concerns its motion as a whole, abstracting from its orientation and its internal arrangement of parts. Aristotle said that you must conceive such a system to be at rest. Galileo added that the state of rest is only a particular case, and that the general statement is ‘either in a state of rest, or of uniform motion in a straight line.’ Accordingly, an Aristotelean would conceive the forces arising from the reaction of alien bodies as being quantitatively measurable in terms of the velocity they sustain, and as directively determined by the direction of that velocity; while the Galilean would direct attention to the magnitude of the acceleration and to its direction. This difference is illustrated by contrasting Kepler and Newton. They both speculated as to the forces sustaining the planets in their orbits. Kepler looked for tangential forces pushing the planets along, whereas Newton looked for radial forces diverting the directions of the planets’ motions.

Instead of dwelling upon the mistake which Aristotle made, it is more profitable to emphasise the justification which he had for it, if we consider the obvious facts of our experience. All the motions which enter into our normal everyday experience cease unless they are evidently sustained from the outside. Apparently, therefore, the sound empiricist must devote his attention to this question of the sustenance of motion. We here hit upon one of the dangers of unimaginative empiricism. The seventeenth century exhibits another example of this same danger; and, of all people in the world, Newton fell into it. Huyghens had produced the wave theory of light. But this theory failed to account for the most obvious facts about light as in our ordinary experience, namely, that shadows cast by obstructing objects are defined by rectilinear rays. Accordingly, Newton rejected this theory and adopted the corpuscular theory which completely explained shadows. Since then both theories have had their periods of triumph. At the present moment the scientific world is seeking for a combination of the two. These examples illustrate the danger of refusing to entertain an idea because of its failure to explain one of the most obvious facts in the subject matter in question. If you have had your attention directed to the novelties in thought in your own lifetime, you will have observed that almost all really new ideas have a certain aspect of foolishness when they are first produced.

Returning to the laws of motion, it is noticeable that no reason was produced in the seventeenth century for the Galilean as distinct from the Aristotelian position. It was an ultimate fact. When in the course of these lectures we come to the modern period, we shall see that the theory of relativity throws complete light on this question; but only by rearranging our whole ideas as to space and time.

It remained for Newton to direct attention to mass as a physical quantity inherent in the nature of a material body. Mass remained permanent during all changes of motion. But the proof of the permanence of mass amid chemical transformations had to wait for Lavoisier, a century later. Newton’s next task was to find some estimate of the magnitude of the alien force in terms of the mass of the body and of its acceleration. He here had a stroke of luck. For, from the point of view of a mathematician, the simplest possible law, namely the product of the two, proved to be the successful one. Again the modern relativity theory modifies this extreme simplicity. But luckily for science the delicate experiments of the physicists of to-day were not then known, or even possible. Accordingly, the world was given the two centuries which it required in order to digest Newton’s laws of motion.

Having regard to this triumph, can we wonder that scientists placed their ultimate principles upon a materialistic basis, and thereafter ceased to worry about philosophy? We shall grasp the course of thought, if we understand exactly what this basis is, and what difficulties it finally involves. When you are criticising the philosophy of an epoch, do not chiefly direct your attention to those intellectual positions which its exponents feel it necessary explicitly to defend. There will be some fundamental assumptions which adherents of all the variant systems within the epoch unconsciously presuppose. Such assumptions appear so obvious that people do not know what they are assuming because no other way of putting[putting] things has ever occurred to them. With these assumptions a certain limited number of types of philosophic systems are possible, and this group of systems constitutes the philosophy of the epoch.

One such assumption underlies the whole philosophy of nature during the modern period. It is embodied in the conception which is supposed to express the most concrete aspect of nature. The Ionian philosophers asked, What is nature made of? The answer is couched in terms of stuff, or matter, or material,—the particular name chosen is indifferent—which has the property of simple location in space and time, or, if you adopt the more modern ideas, in space-time. What I mean by matter, or material, is anything which has this property of simple location. By simple location I mean one major characteristic which refers equally both to space and to time, and other minor characteristics which are diverse as between space and time.

The characteristic common both to space and time is that material can be said to be here in space and here in time, or here in space-time, in a perfectly definite sense which does not require for its explanation any reference to other regions of space-time. Curiously enough this character of simple location holds whether we look on a region of space-time as determined absolutely or relatively. For if a region is merely a way of indicating a certain set of relations to other entities, then this characteristic, which I call simple location, is that material can be said to have just these relations of position to the other entities without requiring for its explanation any reference to other regions constituted by analogous relations of position to the same entities. In fact, as soon as you have settled, however you do settle, what you mean by a definite place in space-time, you can adequately state the relation of a particular material body to space-time by saying that it is just there, in that place; and, so far as simple location is concerned, there is nothing more to be said on the subject.