We shall devote the next few chapters to an account, as free from technicalities as possible, of these great divisions of Thomson's earlier original work as professor at Glasgow.


CHAPTER VI

FRIENDSHIP WITH STOKES AND JOULE. EARLY WORK AT GLASGOW

During his residence at Cambridge Thomson gained the friendship of George Gabriel Stokes, who had graduated as Senior Wrangler and First Smith's Prizeman in 1841. They discussed mathematical questions together and contributed articles on various topics to the Cambridge Mathematical Journal. In 1846 "Cambridge and Dublin" was substituted for "Cambridge" in the title of the Journal, and a new series was begun under the editorship of Thomson. A feature of the earlier volumes of the new issue was a series of Notes on Hydrodynamics written by agreement between Thomson and Stokes, and printed in vols. ii, iii, and v. The first, second, and fifth of the series were written by Thomson, the others by Stokes. The matter of these Notes was not altogether novel; but many points were put in a new and more truly physical light, and the series was no doubt of much service to students, for whose use the articles were intended. Some account of these Notes will be given in a later chapter on Thomson's hydrodynamical papers.

For the mathematical power and sure physical instinct of Stokes Thomson had always the greatest admiration. When asked on one occasion who was the most outstanding worker in physical science on the continent, he replied, "I do not know, but whoever he is, I am certain that Stokes is a match for him." In a report of an address which he delivered in June 1897, at the celebration of the Jubilee of Sir George Stokes as Lucasian Professor of Mathematics, Lord Kelvin referred to their early intercourse at Cambridge in terms which were reported as follows: "When he reflected on his own early progress, he was led to recall the great kindness shown to himself, and the great value which his intercourse with Sir George Stokes had been to him through life. Whenever a mathematical difficulty occurred he used to say to himself, 'Ask Stokes what he thinks of it.' He got an answer if answer was possible; he was told, at all events, if it was unanswerable. He felt that in his undergraduate days, and he felt it more now."

After the death of Stokes in February 1902, Lord Kelvin again referred, in an enthusiastic tribute in Nature for February 12, to these early discussions. "Stokes's scientific work and scientific thought is but partially represented by his published writings. He gave generously and freely of his treasures to all who were fortunate enough to have an opportunity of receiving from him. His teaching me the principles of solar and stellar chemistry when we were walking about among the colleges sometime prior to 1852 (when I vacated my Peterhouse Fellowship to be no more in Cambridge for many years) is but one example."

The interchange of ideas between Stokes and Thomson which began in those early days went on constantly and seems to have been stimulating to both. The two men were in a sense complementary in nature and temperament. Both had great power and great insight, but while Stokes was uniformly calm, reflective, and judicial, Thomson's enthusiasm was more outspokenly fervid, and he was apt to be at times vehement and impetuous in his eagerness to push on an investigation; and though, as became his nationality, he was cautious in committing himself to conclusions, he exercised perhaps less reserve in placing his results before the public of science.

A characteristic instance of Thomson's vehement pursuit of experimental results may be given here, although the incidents occurred at a much later date in his career than that with which we are at present concerned. In 1880 the invention of the Faure Secondary Battery attracted his attention. M. Faure brought from Paris some cells made up and ready charged, and showed in the Physical Laboratory at Glasgow the very powerful currents which, in consequence of their very low internal resistance, they were capable of producing in a thick piece of copper wire. The cells were of the original form, constructed by coating strips of sheet lead on both sides with a paste of minium moistened with dilute sulphuric acid, swathing them in woollen cloth sewed round them, and then rolling two together to form the pair of plates for one cell.