A supply of sheet lead, minium, and woollen cloth was at once obtained, and the whole laboratory corps of students and staff was set to work to manufacture secondary batteries. A small Siemens-Halske dynamo was telegraphed for to charge the cells, and the ventilating steam-engine of the University was requisitioned to drive the dynamo during the night. Thus the University stokers and engineer were put on double shifts; the cells were charged during the night and the charging current and battery-potential measured at intervals.

Then the cells were run down during the day, and their output measured in the same way. Just as this began, Thomson was laid up with an ailment which confined him to bed for a couple of weeks or so; but this led to no cessation of the laboratory activity. On the contrary, the laboratory corps was divided into two squads, one for the night, the other for the day, and the work of charging and discharging, and of measurement of expenditure and return of energy went on without intermission. The results obtained during the day were taken to Thomson's bedside in the evening, and early in the morning he was ready to review those which had been obtained during the night, and to suggest further questions to be answered without delay. This mode of working could not go on indefinitely, but it continued until his assistants (some of whom had to take both shifts!), to say nothing of the stokers and students, were fairly well exhausted.

On other occasions, when he was from home, he found the post too slow to convey his directions to his laboratory workers, and telegraphed from day to day questions and instructions regarding the work on hand. Thus one important result (anticipated, however, by Villari) of the series of researches on the effects of stress on magnetisation which forms Part VII of his Electrodynamic Qualities of Metals—the fact that up to a certain magnetising force the effect of pull, applied to a wire of soft iron, is to increase the magnetisation produced, and for higher magnetising forces to diminish it—was telegraphed to him on the night on which the paper was read to the Royal Society.

It will thus be seen that Thomson, whether confined to his room or on holiday, kept his mind fixed upon his scientific or practical work, and was almost impatient for its progress. Stokes worked mainly by himself; but even if he had had a corps of workers and assistants, it is improbable that such disturbances of hours of attendance and laboratory and workshop routine would have occurred, as were not infrequent at Glasgow when Thomson's work was, in the 'sixties and 'seventies, at its intensest.

Stokes and Thomson were in succession presidents of the Royal Society, Stokes from 1885 to 1890, and Thomson (from 1892 as Lord Kelvin) from 1890 to 1895. This is the highest distinction which any scientific man in this country can achieve, and it is very remarkable that there should have been in recent times two presidents in succession whose modes of thought and mathematical power are so directly comparable with those of the great founder of modern natural philosophy. Stokes had the additional distinction of being the lineal successor of Newton as Lucasian Professor of Mathematics at Cambridge. But it was reserved for Thomson to do much by the publication of Thomson and Tait's Natural Philosophy to bring back the current of teaching and thought in dynamical science to the ideas of the Principia, and to show how completely the fundamental laws, as laid down in that great classic, avail for the inclusion of the modern theory of energy, in all its transformations, within the category of dynamical action between material systems.

An exceedingly eminent politician, now deceased, said some years ago that the present age was singularly deficient in minds of the first quality. So far as scientific genius is concerned, the dictum was singularly false: we have here a striking proof of the contrary. But then few politicians know anything of science; indeed some of those who guide, or aspire to guide, the destinies of the most scientific and industrial empire the world has ever seen are almost boastful of their ignorance. There are, of course, honourable exceptions.

It is convenient to refer here to the share which Stokes and Thomson took in the physical explanation of the dark lines of the solar spectrum, and to their prediction of the possibility of determining the constitution of the stars and of terrestrial substances by what is now known as spectrum analysis. Thomson used to give the physical theory of these lines in his lectures, and say that he obtained the idea from Stokes in a conversation which they had in the garden of Pembroke at Cambridge, "some time prior to 1852" (see the quotation from his Nature article quoted above, p. [80], and the Baltimore Lectures, p. [101]). This is confirmed by a student's note-book, of date 1854, which is now in the Natural Philosophy Department. The statements therein recorded are perfectly definite and clear, and show that at that early date the whole affair of spectrum analysis was in his hands, and only required confirmation by experiments on the reversal of the lines of terrestrial substances by an atmosphere of the substance which produced the lines, and a comparison of the positions of the bright lines of terrestrial substances with those of the dark lines of the solar spectrum. Why Thomson did not carry out all these experiments it would be difficult to say. Some of them he did make, for Professor John Ferguson, who was a student of Natural Philosophy in 1859-60, has recently told how he witnessed Thomson make the experiment of reversing the lines of sodium by passing the light from the salted flame of a spirit lamp through vapour of sodium produced by heating the metal in an iron spoon. A few days later, says Professor Ferguson, Thomson read a letter to his class announcing Bunsen and Kirchhoff's discovery.

A letter of Stokes to Sir John Lubbock, printed in the Scientific Correspondence of Sir George Gabriel Stokes, states his recollection of the matter, and gives Thomson the credit of having inferred the method of spectrum analysis, a method to which Stokes himself makes no claim. He says, "I know, I think, what Sir William Thomson was alluding to. I knew well, what was generally known, and is mentioned by Herschel in his treatise on Light, that the bright D seen in flames is specially produced when a salt of soda is introduced. I connected it in my own mind with the presence of sodium, and I suppose others did so too. The coincidence in position of the bright and dark D is too striking to allow us to regard it as fortuitous. In conversation with Thomson I explained the connection of the dark and bright line by the analogy of a set of piano strings tuned to the same note, which, if struck, would give out that note, and also would be ready to sound it, to take it up, in fact, if it were sounded in air. This would imply absorption of the aërial vibrations, as otherwise there would be a creation of energy. Accordingly I accounted for the presence of the dark D in the solar spectrum by supposing that there was sodium in the atmosphere, capable of absorbing light of that particular refrangibility. He asked me if there were any other instances of such coincidences of bright and dark lines, and I said I thought there was one mentioned by Brewster. He was much struck with this, and jumped to the conclusion that to find out what substances were in the stars we must compare the positions of the dark lines seen in their spectra with the spectra of metals, etc....

"I should have said that I thought Thomson was going too fast ahead, for my notion at the time was that, though a few of the dark lines might be traced to elementary substances, sodium for one, probably potassium for another, yet the great bulk of them were probably due to compound vapours, which, like peroxide of nitrogen and some other known compound gases, have the character of selective absorption."

It will be remembered that the experimental establishment of the method of spectrum analysis was published towards the end of 1859 by Bunsen and Kirchhoff, to whom, therefore, the full credit of discoverers must be given.