[Fig. 1056.] represents the mould for making crucibles for the cast-steel works. M, M, is a solid block of wood, to support the two-handled outside mould N, N. This being rammed full of the proper clay dough or compost (see [Crucible]), the inner mould is to be then pressed vertically into it, till it reaches the bottom P, being directed and facilitated in its descent by the point K. A cord passes through O, by which the inner mould is suspended over a pulley, and guided in its motions.

When a plate of polished steel is exposed to a progressive heat, it takes the following colours in succession: 1. a faint yellow; 2. a pale straw-colour; 3. a full yellow; 4. a brown yellow; 5. a brown with purple spots; 6. a purple; 7. a bright blue; 8. a full blue; 9. a dark blue, verging on black; after which the approach to ignition supersedes all these colours. If the steel plate has been previously hardened by being dipped in cold water or mercury when red-hot, then those successive shades indicate or correspond to successive degrees of softening or tempering. Thus, No. 1. suits the hard temper of a lancet, which requires the finest edge, but little strength of metal; No. 2. a little softer, for razors and surgeons’ amputating instruments; No. 3. somewhat more toughness, for penknives; No. 4. for cold chisels and shears for cutting iron; No. 5. for axes and plane-irons; No. 6. for table knives and cloth shears; No. 7. for swords and watch springs; No. 8. for small fine saws and daggers; No. 9. for large saws, whose teeth need to be set with pliers, and sharpened with a file. After ignition, if the steel be very slowly cooled, it becomes exceedingly soft, and fit for the engraver’s purposes. Hardened steel may be tempered to the desired pitch, by plunging it in metallic baths heated to the proper thermometric degree, as follows: for No. 1. 430° Fahr.; No. 2. 450°; No. 3. 470°; No. 4. 490°; No. 5. 510°; No. 6. 530°; No. 7. 550°; No. 8. 560°; No. 9. 600°.

Small steel tools are most frequently tempered, after hardening, by covering their surface with a thin coat of tallow, and heating them in the flame of a candle till the tallow diffuses a faint smoke, and then thrusting them into the cold tallow. Rinman long ago defined steel to be any kind of iron which, when heated to redness, and then plunged in cold water, becomes harder. But several kinds of cast iron are susceptible of such hardening. Every malleable and flexible iron, however, which may be hardened in that way, is a steel. Moreover, steel may be distinguished from pure iron by its giving a dark-gray spot when a drop of dilute nitric acid is let fall on its surface, while iron affords a green one. Exposed to the air, steel rusts less rapidly than iron; and the more highly carburetted, the more slowly does it rust, and the blacker is the spot left by an acid.

After hardening, steel seems to be quite a different body; even its granular texture becomes coarser or finer according to the degree of heat to which it was raised; it grows so hard as to scratch glass, and resist the keenest file, while it turns exceedingly brittle. When a slowly cooled steel rod is forged and filed, it becomes capable of affording agreeable and harmonious sounds by its vibrations; but hard-tempered steel affords only dull deafened tones, like those emitted by a cracked instrument.

The good quality of steel is shown by its being homogeneous; being easily worked at the forge; by its hardening and tempering well; by its resisting or overcoming forces; and by its elasticity. To ascertain the first point, the surface should be ground and polished on the wheel; when its lustre and texture will appear. The second test requires a skilful workman to give it a heat suitable to its nature and state of conversion. The size and colour of the grain are best shown by taking a bar forged into a razor form; hardening and tempering it; and then breaking off the thin edge in successive bits with a hammer and anvil. If it had been fully ignited only at the end, then, after the hardening, it will display, on fracture, a succession in the aspect of its grains from that extremity to the other; as they are whiter and larger at the former than the latter. The other qualities become manifest on filing the steel; using it as a chisel for cutting iron; or bending it under a heavy weight.

Much interest was excited a few years back by the experiments of Messrs. Stodart and Faraday on the alloys of steel with silver, platinum, rhodium, and iridium. Steel refuses to take up in fusion more than one five-hundreth part of silver; but with this minute quantity of alloy, it is said to bear a harder temper, without losing its tenacity. When pure iron is substituted for steel, the alloys so formed are much less subject to oxidation in damp air than before. With three per cent. of iridium and osmium, an alloy was obtained which had the property of tempering like steel, and of remaining clean and bright, in circumstances when simple iron became covered with rust. “Upon the whole,” says the editor of the Quarterly Journal of Science, giving a report of these experiments in his 14th volume, p. 378, “though we consider these researches upon the alloys of steel as very interesting, we are not sanguine as to their important influence upon the improvement of the manufacture of cutlery, and suspect that a bar of the best ordinary steel, selected with precaution, and most carefully forged, wrought, and tempered, under the immediate inspection of the master, would afford cutting instruments as perfect and excellent as those composed of wootz, or of the alloys.”

Case-hardening of iron, is a process for converting a thin film of the outer surface into steel, while the interior remains as before. Fine keys are generally finished in this way. See [Case-hardening].

So great is the affinity of iron for carbon, that, in certain circumstances, it will absorb it from carburetted hydrogen, or coal-gas, and thus become converted into steel. On this principle, Mr. Macintosh of Glasgow obtained a patent for making steel. His furnace consists of one cylinder of bricks built concentrically within another. The bars of iron are suspended in the innermost, from the top; a stream of purified coal-gas circulates freely round them, entering below and escaping slowly above, while the bars are maintained in a state of bright ignition by a fire burning in the annular space between the cylinders. The steel so produced is of excellent quality; but the process does not seem to be so economical as the ordinary cementation with charcoal powder.

Damasking of steel, is the art of giving to sabre blades a variety of figures in the style of watering. See [Damascus Blades].

Several explanations have been offered of the change in the constitution of steel, which accompanies the tempering operation; but none of them seems quite satisfactory. It seems to be probable that the ultimate molecules are thrown by the sudden cooling into a constrained state, so that their poles are not allowed to take the position of strongest attraction and greatest proximity; and hence the mass becomes hard, brittle, and somewhat less dense. An analogous condition may be justly imputed to hastily cooled glass, which, like hardened steel, requires to be annealed by a subsequent nicely graduated heat, under the influence of which the particles assume the position of repose, and constitute a denser, softer, and more tenacious body. The more sudden the cooling of ignited steel, the more unnatural and constrained will be the distribution of its particles, and also the more refractory, an effect produced by plunging it into cold mercury. This excess of hardness is removed in any required degree by judicious annealing or tempering. The state of the carbon present in the steel may also be modified by the rate of refrigeration, as Mr. Karsten and M. Bréant conceive happens with cast iron and the damask metal. If the uniform distribution and combination of the carbon through the mass, determine the peculiarity of white cast iron, which is a hard and brittle substance, and if its transition to the dark-gray and softer cast metal be effected by a partial formation of plumbago during slow cooling, why may not something similar be supposed to occur with steel, an analogous compound?