The nacarats, and the deep cherry colours, are given precisely like the ponceaux, only they receive no annotto ground; and baths may be employed which have served for the ponceau, so as to complete their exhaustion. Fresh baths are not made for the latter colours, unless there be no occasion for the poppy.
With regard to the lighter cherry-reds, rose colour of all shades and flesh colours, they are made with the second and last runnings of the carthamus, which are weaker. The deepest shades are passed through first.
The lightest of all these shades, which is an extremely delicate flesh colour, requires a little soap to be put into the bath. This soap lightens the colour, and prevents it from taking too speedily, and becoming unevenly. The silk is then washed, and a little brightening is given it, in a bath which has served for the deeper colours.
All these baths are employed the moment they are made, or as speedily as possible, because they lose much of their colour upon keeping, by which they are even entirely destroyed at the end of a certain time. They are, moreover, used cold, to prevent the colour from being injured. It must have been remarked in the experiments just described, that the caustic alkalies attack the extremely delicate colour of carthamus, making it pass to yellow. This is the reason why crystals of soda are preferred to the other alkaline matters.
In order to diminish the expense of the carthamus, it is the practice in preparing the deeper shades to mingle with the first and the second bath about one fifth of the bath of archil.
Dobereiner regards the red colouring matter of carthamus as an acid, and the yellow as a base. His carthamic acid forms, with the alkalies, colourless salts, decomposed by the tartaric and acetic acids, which precipitate the acid of a bright rose-red. Heat has a remarkable influence upon carthamus, rendering its red colour yellow and dull. Hence, the colder the water is by which it is extracted, the finer is the colour. Light destroys the colour very rapidly, and hitherto no means have been found of counteracting this effect. For this reason this brilliant colour must be dried in the shade, its dye must be given in a shady place, and the silk stuffs dyed with it must be preserved as much as possible from the light. Age is nearly as injurious as light, especially upon the dye in a damp state. The colour is very dear, because a thousand parts of carthamus contain only five of it.
In preparing the finest rouge, the yellow colouring matter being separated by washing with water, the red is then dissolved by the aid of alkali, and is thrown down on linen or cotton rags by saturating the solution with vegetable acid. The colour is rinsed out of these rags, dissolved anew in alkalis, and once more precipitated by lemon juice. The best and freshest carthamus must be selected. It is put into linen bags, which are placed in a stream of water, and kneaded till the water runs off colourless. The bags are then put into water soured with a little vinegar, kneaded till the colour is all expelled, and finally rinsed in running water. By this treatment the carthamus loses nearly half its weight. 6633 cwts. of safflower were imported into the United Kingdom in 1835, of which 2930 cwts. were retained for internal consumption.
CASE-HARDENING, is the name of the process by which iron tools, keys, &c., have their surfaces converted into steel.
Steel when very hard is brittle, and iron alone is for many purposes, as for fine keys, far too soft. It is therefore an important desideratum to combine the hardness of a steely surface with the toughness of an iron body. These requisites are united by the process of case-hardening, which does not differ from the making of steel, except in the shorter duration of the process. Tools, utensils, or ornaments, intended to be polished, are first manufactured in iron and nearly finished, after which they are put into an iron box, together with vegetable or animal charcoal in powder, and cemented for a certain time. This treatment converts the external part into a coating of steel, which is usually very thin, because the time allowed for the cementation is much shorter than when the whole substance is intended to be converted. Immersion of the heated pieces into water hardens the surface, which is afterwards polished by the usual methods. Moxon in his Mechanic Exercises, p. 56., gives the following receipt for case-hardening:—“Cow’s horn or hoof is to be baked or thoroughly dried and pulverised. To this add an equal quantity of bay salt; mix them with stale chamber-lye or white wine vinegar: cover the iron with this mixture, and bed it with the same in loam, or enclose it in an iron box: lay it on the hearth of the forge to dry and harden: then put it into the fire, and blow till the lump have a blood-red heat, and no higher, lest the mixture be burnt too much. Take the iron out, and immerse it in water to harden.” I consider the vinegar to be quite superfluous.
I shall now describe the recent application of prussiate (ferrocyanate) of potash to this purpose. The piece of iron, after being polished, is to be made brightly red-hot, and then rubbed or sprinkled over with the above salt in fine powder, upon the part intended to be hardened. The prussiate being decomposed, and apparently dissipated, the iron is to be quenched in cold water. If the process has been well managed, the surface of the metal will have become so hard as to resist the file. Others propose to smear over the surface of the iron with loam made into a thin paste with a strong solution of the prussiate, to dry it slowly, then expose the whole to a nearly white heat, and finally plunge the iron into cold water, when the heat has fallen to dull redness. See [Steel].