5. Heating furnaces, being destined to heat the pigs or bars of copper to be laminated, as well as the copper sheets themselves, are made much longer in proportion to their breadth. Their hearth is horizontal, the vault not much depressed; they have only one door, placed upon the side, but which extends nearly the whole length of the furnace: this door may be raised by means of a counter-weight, in the same way as in the furnaces for the fabrication of sheet-iron and brass.

Series of operations to which the ore is subjected.—The ores which are smelted in the Swansea works are cupreous pyrites, more or less mingled with gangue (vein-stone). The pyrites is composed of nearly equal proportions of sulphuret of copper and sulphuret of iron.

The earthy matters which accompany the pyrites are usually siliceous, though in some mines the metalliferous deposit is mixed with clay or fluate of lime. Along with these substances, pretty uniformly distributed, tin and arsenical pyrites occur occasionally with the copper; and though these two metals are not chemically combined, yet they cannot be separated entirely in the mechanical preparations. The constituent parts of the ore prepared for smelting are, therefore, copper, iron, sulphur, with tin, arsenic, and earthy matters in some cases. The different ores are mixed in such proportions that the average metallic contents may amount to 812 per cent. The smelting process consists in alternate roastings and fusions. The following description of it is chiefly taken from an excellent paper, published by John Vivian, esq., in the Annals of Philosophy for 1823.

In the roasting operation the volatile substances are disengaged mostly in the gaseous state, while the metals that possess a strong affinity for oxygen become oxidized. In the fusion the earthy substances combine with these oxides, and form glassy scoriæ or slags, which float upon the surface of the melted metal.

These calcinations and fusions take place in the following order:—

1. Calcination of the ore. 2. Melting of the calcined ore. 3. Calcination of the coarse metal. 4. Melting of the calcined coarse metal. 5. Calcination of the fine metal (second matt). 6. Melting of the calcined fine metal. 7. Roasting of the coarse copper. In some smelting works, this roasting is repeated four times; in which case a calcination and a melting are omitted. In the Havod works, however, the same saving is made without increasing the number of roastings. 8. Refining or toughening the copper.

Besides these operations, which constitute the treatment of copper properly speaking, two others are sometimes performed, in which only the scoriæ are melted. These may be designated by the letters a and b. a is the re-melting of the portion of the scoriæ of the second process, which contain some metallic granulations. b is a particular melting of the scoriæ of the fourth operation. This fusion is intended to concentrate the particles of copper in the scoriæ, and is not practised in all smelting works.

First operation. Calcination of the ore.—The different ores, on arriving from Cornwall and other districts where they are mined, are discharged in continuous cargoes at the smelting works, in such a way, that by taking out a portion from several heaps at a time, a tolerably uniform mixture of ores is obtained; which is very essential in a foundry, because, the ores being different in qualities and contents, they act as fluxes upon each other. The ore thus mixed is transported to the works in wooden measures that hold a hundred-weight. The workmen entrusted with the calcination convey the ore into the hoppers of the calcining furnace, whence it falls into the hearth; other workmen spread it uniformly on the surface by iron rakes. The charge of a furnace is from three tons to three tons and a half. Fire is applied and gradually increased, till, towards the end of the operation, the temperature be as high as the ore can support without melting or agglutinating. To prevent this running together, and to aid the extrication of the sulphur, the surfaces are renewed, by stirring up the ore at the end of every hour. The calcination is usually completed at the end of 12 hours, when the ore is tumbled into the arch under the sole of the furnace. Whenever the ore is cold enough to be moved, it is taken out of the arch, and conveyed to the calcined heap.

The ore in this process hardly changes weight, having gained in oxidizement nearly as much as it has lost in sulphur and arsenic; and if the roasting has been rightly managed, the ore is in a black powder, owing to the oxide of iron present.

Second operation. Fusion of the calcined ore.—The calcined ore is likewise given to the melters in measures containing a hundred-weight. They toss it into hoppers, and after it has fallen on the hearth, they spread it uniformly. They then let down the door, and lute it tightly. In this fusion there are added about 2 cwt. of scoriæ proceeding from the melting of the calcined matt, to be afterwards described. The object of this addition is not only to extract the copper that these scoriæ may contain, but especially to increase the fusibility of the mixture. Sometimes also, when the composition of the ore requires it, lime, sand, or fluor spar is added; and particularly the last fluxing article.