The furnace being charged, fire is applied, and the sole care of the founder is to keep up the heat so as to have a perfect fusion; the workman then opens the door, and stirs about the liquid mass to complete the separation of the metal (or rather of the matt) from the scoriæ, as well as to hinder the melted matter from sticking to the sole. The furnace being ready, that is, the fusion being perfect, the founder takes out the scoriæ by the front door, by means of a rake. When the matt is thus freed from the scoriæ, a second charge of calcined ore is then introduced to increase the metallic bath; which second fusion is executed like the first. In this way, new charges of roasted ore are put in till the matt collected on the hearth rises to a level with the door-way, which happens commonly after the third charge. The tap hole is now opened; the matt flows out into the pit filled with water, where it is granulated during its immersion; and it collects in the pan placed at the bottom. The granulated matt is next conveyed into the matt warehouse. The oxidation with which the grains get covered by the action of the water, does not allow the proper colour of the matt or coarse metal to be distinguished; but in the bits which stick in the gutter, it is seen to be of a steel gray. Its fracture is compact, and its lustre metallic. The scoriæ often contain metallic grains; they are broken and picked with care. All the portions which include some metallic particles are re-melted in an accessory process. The rejected scoriæ have been found to be composed of siliceous matter 59, oxide of copper 1, oxide of tin 0·7.
In this operation, the copper is concentrated by the separation of a great part of the matters with which it was mixed or combined. The granulated matt produced, contains in general 33 per cent. of copper; it is therefore four times richer than the ore; and its mass is consequently diminished in that proportion. The constituent parts are principally copper, iron, and sulphur.
The most important point to hit in the fusion just described, is to make a fusible mixture of the earths and the oxides, so that the matt of copper may, in virtue of its greater specific gravity, fall to the under-part, and separate exactly from the slag. This point is attained by means of the metallic oxides contained in the scoriæ of the fourth operation, of which 2 cwt. were added to the charge. These consist almost entirely of black oxide of iron. When the ores are very difficult to melt, a measure of about half a hundred-weight of fluor spar is added; but this must be done with precaution, for fear of increasing the scoriæ too much.
The business goes on day and night. Five charges are commonly put through hands in the course of 24 hours; but when all circumstances are favourable, that is to say, when the ore is fusible, when the fuel is of the first quality, and when the furnace is in good condition, even six charges a day have been despatched.
The charge is a ton and a half of calcined ore, so that a melting furnace corresponds nearly to a calcining furnace; the latter turning out nearly 7 tons of calcined ore in 24 hours.
The workmen are paid by the ton.
Third operation. Calcination of the coarse metal, or the matt.—The object of this operation is principally to oxidize the iron, an oxidation easier to execute, than in the first calcining, because the metal is now disengaged from the earthy substances, which screened it from the action of the air.
This calcination is executed in the furnace already represented, [fig. 296], [297], [298.] [page 318.] exactly in the same way as the ore was calcined. The metal must be perpetually stirred about, to expose all its surfaces to the action of the hot air, and to hinder the clotting together. The operation lasts 24 hours; during the first six, the fire should be very moderate, and thereafter gradually increased to the end of the calcination. The charge is, like that of the first, 3 tons and a half.
Fourth operation. Melting of the calcined coarse metal, or calcined matt.—In the fusion of this first calcined matt, some scoriæ of the latter operations must be added, which are very rich in oxide of copper, and some crusts from the hearth, which are likewise impregnated with it. The proportion of these substances varies according to the quality of the calcined matt.
In this second fusion, the oxide of copper contained in the scoriæ, is reduced by the affinity of the sulphur, one portion of which passes to the state of acid, while the other forms a subsulphuret with the copper become free. The matt commonly contains a sufficient quantity of sulphur to reduce the oxide of copper completely; but if not, which may happen if the calcination of the matt has been pushed too far, a small quantity of uncalcined matt must be introduced, which, by furnishing sulphur, diminishes the richness of the scoriæ, and facilitates the fusion.