The next point to be considered is the best method of heating the file for hardening. For this purpose a fire, similar to the common smiths’ fire, is generally employed. The file is held in a pair of tongs by the tang, and introduced into the fire, consisting of very small cokes, pushing it more or less into the fire for the purpose of heating it regularly. It must frequently be withdrawn with the view of observing that it is not too hot in any part. When it is uniformly heated, from the tang to the point, of a cherry red colour, it is fit to quench in the water. At present an oven, formed of fire-bricks, is used for the larger files, into which the blast of the bellows is directed, being open at one end, for the purpose of introducing the files and the fuel. Near to the top of the oven are placed two cross bars, on which a few files are placed, to be partially heating. In the hardening of heavy files, this contrivance affords a considerable saving, in point of time, while it permits them also to be more uniformly and thoroughly heated.

After the file is properly heated for the purpose of hardening, in order to produce the greatest possible hardness, it should be cooled as soon as possible. The most common method of effecting this is by quenching it in the coldest water. Some file-makers have been in the habit of putting different substances in their water, with a view to increase its hardening property. The addition of sulphuric acid to the water was long held a great secret in the hardening of saw files. After all, however, it will be found, that clear spring water, free from animal and vegetable matter, and as cold as possible, is the best calculated for hardening files of every description.

In quenching the files in water, some caution must be observed. All files, except the half-round, should be immersed perpendicularly, as quickly as possible, so that the upper part shall not cool. This management prevents the file from warping. The half-round file must be quenched in the same steady manner; but, at the same time that it is kept perpendicular to the surface of the water, it must be moved a little horizontally, in the direction of the round side, otherwise it will become crooked backwards.

After the files are hardened, they are brushed over with water, and powdered cokes, when the surface becomes perfectly clean and metallic. They ought also to be washed well in two or three clean waters, for the purpose of carrying off all the salt, which, if allowed to remain, will be liable to rust the file. They should moreover be dipped into lime-water, and rapidly dried before the fire, after being oiled with olive oil, containing a little oil of turpentine, while still warm. They are then finished.

FILLIGREE (Filigrane, Fr.; Filigran, or Feine Drahtgeflecht, Germ.); is, as the last term justly expresses it, intertwisted fine wire, used for ornamenting gold and silver trinkets. The wire is seldom drawn round, but generally flat or angular; and soldered by gold or silver solder with borax and the blowpipe. The Italian word, filigrana, is compounded of filum and granum, or granular net-work; because the Italians, who first introduced this style of work, placed small beads upon it.

FILTRATION (Eng. and Fr.; Filtriren, Germ.), is a process purely mechanical, for separating a liquid from the undissolved particles floating in it, which liquid may be either the useful part, as in vegetable infusions, or of no use, as the washings of mineral precipitates. The filtering substance may consist of any porous matter in a solid, foliated, or pulverulent form; as porous earthen ware, unsized paper, cloth of many kinds, or sand. The white blotting paper sold by the stationers answers extremely well for filters in chemical experiments, provided it be previously washed with dilute muriatic acid, to remove some lime and iron that are generally present in it. Filter papers are first cut square, and then folded twice diagonally into the shape of a cornet, having the angular parts rounded off. Or the piece of paper being cut into a circle, may be folded fan-like from the centre, with the folds placed exteriorly, and turned out sharp by the pressure of the finger and thumb, to keep intervals between the paper and the funnel into which it is fitted, to favour the percolation. The diameter of the funnel should be about three-fourths of its height, measured from the neck to the edge. If it be more divergent, the slope will be too small for the ready efflux of the fluid. A filter covered with the sediment is most conveniently washed by spouting water upon it with a little syringe. A small camel’s-hair paint brush is much employed for collecting and turning over the contents in their soft state. Agitation or vibration is of singular efficacy in quickening percolation, as it displaces the particles of the moistened powders, and opens up the pores which had become closed. Instead of a funnel, a cylindrical vessel may be employed, having its perforated bottom covered with a disc of filtering powder folded up at the edges, and made tight there by a wire ring. Linen or calico is used for weak alkaline liquors; and flannels, twilled woollen cloth, or felt-stuff for weak acid ones. These filter bags are often made conical like a fool’s cap, and have their mouths supported by a wooden or metallic hoop. Cotton wool put loose into the neck of a funnel answers well for filtering oils upon the small scale. In the large way, oil is filtered in conical woollen bags, or in a cask with many conical tubes in its bottom, filled with tow or cotton wool. Stronger acid and alkaline liquors must be filtered through a layer of pounded glass, quartz, clean sand, or bruised charcoal. The alcarrhazas are a porous biscuit of stone ware made in Spain, which are convenient for filtering water, as also the porous filtering stone of Teneriffe, largely imported into England at one time, but now superseded in a great measure by the artificial filters patented under many forms, consisting essentially of strata of gravel, sand, and charcoal powder.

It is convenient to render the filter self-acting, by accommodating the supply of liquid to the rate of percolation, so that the pressure upon the porous surface may be always equally great. Upon the small scale, the lamp-fountain or bird’s-glass form so generally used for lamps, will be found to answer.

[Fig. 386.] represents a glass bottle A, partly filled with the fluid to be filtered, supported in the ring of a chemical stand, and having its mouth inverted into the same liquor in the filter funnel. It is obvious, that whenever this liquor by filtration falls below the lip of the bottle, air will enter into it, let down a fresh supply to feed the filter, and keep the funnel regularly charged. If larger quantities are to be operated upon, the following apparatus may be employed. [Fig. 387.] A B is a metallic vessel which may be made air-tight; C is the under pipe provided with a stopcock R, for letting down the liquor into the filter a b. The upper pipe t, through which the fluid is poured by means of the funnel E, has also a stopcock which opens or shuts, at the same time, the small side tube u t, through which, during the entrance of the fluid, the air is let off from the receiver. A glass tube g, shows the level of the liquor in the body of the apparatus. In using it, the cock R must be first closed, and the cock S must be opened to fill the receiver. Then the filter is set a going, by re-opening the cock R, so as to keep the fluid in the filter upon a level with the opening of the tube C. Both these pieces of apparatus are essentially the same.