An engineer who does not understand the principles of a locomotive’s action, is not likely to prove a valuable runner. The men who are most successful in getting trains over the road with solar regularity; the men who make the best records on the mileage sheets for economy in fuel and in lubricants; who are lightest in repairs, yet keep their engine going longest,—are those who comprehend the functions of every portion of the engine, and what relation the various parts bear to each other. With this knowledge clearly established in the mind of the runner, his power to detect any thing wrong with his engine becomes instinctive. Trifling defects, which neglect would develop into serious disabilities, are rectified in time, and the whole engine is maintained in smooth working-order by the harmony of its individual sections. The mere stopper and starter is losing his hold on the locomotive service. When he drops off entirely, our mileage for each dollar expended will be decidedly increased.

The principles which apply to the running of a locomotive are equally applicable to the management of an air-brake, with all its perfected connections. This apparatus can not be properly managed unless the man who works it knows something about its action.

PUNY DIFFICULTIES VANQUISH THE IGNORANT ENGINEER.

A great many engineers who run passenger trains, and take an intelligent interest in the working of the locomotive, whose technicalities they have thoroughly mastered, display no desire whatever to understand the air-brake, and are perfectly contented with its action so long as it will stop the train. The air-pump, so wonderfully interesting to those who understand its movements, receives no more attention than is necessary to keep it going so that the required air-pressure is maintained. They know how to start and stop the machine, and they oil it regularly; but these are the limits of their attentions. Should the pump happen to stop working, the cause is mysterious, like many other mysteries; and the natural remedy suggested, is to hit the thing on the head with a monkey-wrench. Should it not respond to this treatment by renewed action, the hand-brakes are resorted to for the rest of the journey; and the round-house foreman or machinist is required to do the head-work which locates the trouble.

A belief prevails among men who labor principally with their hands, that laziness is exclusively physical. This is a mistake. It is a psychological fact, well known to metaphysicians, that mental laziness is prevalent enough to dwarf the minds of half the human race. Men who would willingly work with their hands during half their leisure time to keep their engines in proper condition for running, have to be driven, by fear or jealousy, before they will force their mental faculties to do trifling labor in a new channel.

CAUSES THAT MAKE BRAKES INOPERATIVE OFTEN EASILY REMEDIED.

Any engineer of ordinary intelligence, who will spend one hour a day for two weeks studying up the Westinghouse instruction book, will understand the brake so well, from the pump to the hind end of the train, that any imperfection happening to its working will be as readily located as an ordinary defect in a locomotive. Yet it is an intensely hard matter to induce men running passenger engines to go through this trifling mental exercise. The consequence is, that the brake sometimes becomes inoperative from causes so slight that men should be ashamed to report them; and they would be so if they only comprehended how small a mole-heap became their mountain. I knew a case where all the train men—that is to say, engineer, fireman, conductor, baggageman, and brakemen—wrestled for twenty minutes over a triple valve, trying to find out how to cut the air off a car; and, when the crowd was vanquished, a colored porter came, and showed them how the thing was done. This was on a road where straight air was generally used. One day some winters ago, a passenger train on the road I worked for was delayed an hour or more at a station, waiting for something. When the engineer tried to start the air-pump, it would not work. He fumed and fussed over it for fifteen minutes, gave it a liberal dose of copper hammer medicine, and saturated it with oil, but all to no purpose. It would not pump a pound of air, so the old-fashioned Armstrong was called into operation. In the course of its journey, this train had to pass the round-house at headquarters; and the engineer stopped to see if his pump could be given some quick remedy. I happened to be the doctor consulted. On learning the particulars of how the pump stopped working, I set fire to a piece of greasy waste, and held the flame to the check-valve of the air-drum; and the pump went right to work. All the trouble was, that the check-valve was frozen in its seat. I felt sorry for that engineer, he appeared to be so thoroughly ashamed and crestfallen at being baffled by such a small trouble.

CARE OF THE AIR-PUMP.

To run an air-pump successfully, the first requisite is that it should be managed intelligently, and its wants attended to regularly. An air-pump consists of numerous moving parts, which should operate with the least possible amount of friction: consequently, it is important that the machine should be properly lubricated,—not deluged with grease for ten minutes, and then run on the interest of the excess for two hours, but sparingly furnished with clean oil, which will keep the moving parts moist all the time. To accomplish this, the feeding-cup must be kept in proper working-order, so that it will pass the oil regularly. I have found a leading cause for air-pumps working unsatisfactorily to be in the intermittent feeding of the oil-cups. Some dirt gets into the cup, obstructing its action, and greater opening is given to make it feed; then the oil goes through by spasms, and the pump works irregularly; for at one time the steam-piston is churning the oil, and again it is working dry. There is also a common abuse of the oil-can when any thing goes wrong with the pump; for some men will then drench it with oil, expecting that to make it work smoothly. Permanent injury is often done in this way, especially where inferior oils are used, which frequently contain mineral substances in suspension. This solid matter is separated from the oil by the heat, and settles in the small passages, filling them up by degrees till eventually there is no channel left for the steam to pass through to reverse the steam-valve; so the pump stops. I once saw a runner trying to doctor a sick pump by pouring the stickiest kind of gummy valve-oil into an air-cylinder. He gave the thing its quietus, as other poor doctors sometimes do with their patients.