A GOOD FIREMAN MAKES A GOOD ENGINEER.

There is a familiar adage among railroad men, that a good fireman is certain to make a good engineer; and it rarely fails to come out true. To hear some firemen of three months’ standing talk, a stranger might conclude that they knew more about engine running than the oldest engineer in the district. These are not the good firemen. Good firemen learn their own business with the humility born of earnestness, and they do not undertake to instruct others in matters beyond their own knowledge. It is the man who goes into the heart of a subject, who understands how much there is to learn, and is therefore modest in parading his own acquirements, that succeeds.

LEARNING AN ENGINEER’S DUTIES.

When a fireman has mastered his duties sufficiently to keep them going smoothly, he begins to find time for watching the operations of the engineer. He notes how the boiler is fed; and, upon his knowledge of the engineer’s practice in this respect, much of his firing is regulated. The different methods of using the steam by engineers, so that trains can be taken over the road with the least expenditure of coal, are engraven upon the memory of the observant fireman. Many of the acquirements which commend a good fireman for promotion are learned by imperceptible degrees,—the knowledge of speed, for instance, which enables a man to tell how fast a train is running on all kinds of track, and under all conditions of weather. There would be no use in one strange to train service going out for a few runs to learn speed. He might learn nearly all other requisites of engine running before he was able to judge within ten miles of how fast the train was going under adverse circumstances. The same may be said of the sound which indicates how an engine is working. It requires an experienced ear to detect the false note which indicates that something is wrong. Amidst the mingled sounds produced by an engine and train hammering over a steel track, the novice hears nothing but a medley of confused noises, strange and meaningless as are the harmonies of an opera to an untutored savage. But the trained ear of an engineer can distinguish a strange sound amidst all the tumult of thundering exhaust, screaming steam, and clashing steel, as readily as an accomplished musician can detect a false note in a many-voiced chorus. Upon this ability to detect growing defects which pave the way to disaster, depends much of an engineer’s chances of success in his calling. This kind of skill is not obtained by a few weeks’ industry: it is the gradual accumulation of months and years of patient labor.

CONDITIONS OF ENGINE RUNNING THAT VANQUISH THE INEXPERIENCED MAN.

I once knew a machine-shop foreman, a man of extensive experience in building and repairing engines, who took a locomotive out on trial trip. A side-rod pin began to run hot; and, although he was leaning out of the cab-window, he did not observe any thing wrong till a drop of babbitt struck him in the eye. An experienced engineer watching the rods would have detected the condition of affairs before babbitt was thrown.

A difficult thing for an inexperienced man to control in running a locomotive at night, when the conditions of adhesion are bad, is the slipping of the drivers. Slipping is a simple matter enough to those who feel it in the vibrations of the engine; but the novice has not this sensitiveness to slipping vibration developed, and he must depend upon his eyesight or his hearing to detect it. On a dark, stormy night, the eye is useless as a means of judging as to the regularity of the revolving wheels: the howling wind or rain, rattling on the cab, drowns the sound of the exhaust. Under circumstances of this kind, an engine might jerk the pins out before the empirical engineer discovered the wheels were slipping.

LEARNING TO KEEP THE LOCOMOTIVE IN RUNNING-ORDER.

As his acquaintance with the handling and ordinary working of the locomotive extends, the aspiring fireman learns all about the packing of glands, and how they should be kept so as to run to the best advantage: he displays an active interest in every thing relating to lubrication, from the packing of a box-cellar to the regulating of a rod-cup. When the engineer is round keying up rods, or doing other necessary work about his engine, the ambitious fireman should give a helping hand, and thereby become familiar with the operations that are likely to be of service when he is required to draw upon his own resources for doing the same work.

Of late years the art of locomotive construction has been so highly developed, the amount of strain and shocks to which each working part is subjected has been so well calculated and provided against, that breakages are really very rare on roads where the motive-power is kept in first-class condition. Consequently, firemen gain comparatively small insight, on the road, into the best and quickest methods of disconnecting engines, or of fixing up mishaps promptly, so that a train may not be delayed longer than is absolutely necessary. A fireman must get this information beyond the daily routine of his experience. He must search for the knowledge among those competent to give it. Persistent inquiry among the men posted on these matters; observation amidst machine-shop and round-house operations; and careful study of locomotive construction, so that a clear insight into the physiology of the machine may be obtained,—will prepare one to meet accidents, armed with the knowledge which vanquishes all difficulties. Reflecting on probable or possible mishaps, and calculating what is best to be done under all contingencies that can be conceived, prepare a man to act promptly when a breakdown occurs.