Fig. 84. Parmelia physodes Ach. Thallus growing vertically; soredia chiefly on the lobes directed downwards, reduced (M. P., Photo.).
Similar soralia are characteristic of Physcia hispida (Ph. stellaris subsp. tenella), the apical helmet being a specially pronounced feature of that species, though, as Lesdain[493] has pointed out, the hooded structures are primarily the work of insects. In vertical substrata they occur on the lower lobes of the plant.
Apical soralia are rare in fruticose lichens, but in an Alpine variety of Ramalina minuscula they are formed at the tips of the fronds and are protected by an extension of the upper cortical tissues. Another instance occurs in a Ramalina from New Granada referred by Nylander to R. calicaris var. farinacea: it presents a striking example of the helmet tip.
c. Deep-seated Soralia. In the cases already described Schwendener[494] and Nilson[495] held that the algae gave the first impulse to the formation of the soredia; but in the Pertusariaceae[496], a family of crustaceous lichens, there has been evolved a type of endogenous soralium which originates with the medullary hyphae. In these, special hyphae rise from a weft of filaments situated just above the lowest layer of the thallus at the base of the medulla, the weft being distinguished from the surrounding tissue by staining blue with iodine. A loose strand of hyphae staining the usual yellow colour rises from the surface of the “blue” weft and, traversing the medullary tissue, surrounds the gonidia on the under side of the gonidial zone. The hyphae continue to grow upward, pushing aside both the upper gonidial zone and the cortex, and carrying with them the algal cells first encountered. When the summit is reached, there follows a very active growth of both gonidia and hyphae. Each separate soredium so produced consists finally of five to ten algal cells surrounded by hyphae and measures 8 µ to 13 µ in diameter. The cortex forms a well-defined wall or margin round the mass of soredia.
A slightly different development is found in Lecanora tartarea, one of the “crottle” lichens, which has been placed by Darbishire in Pertusariaceae. The hyphae destined to form soredia also start from the weft of tissue at the base of the thallus, but they simply grow through the gonidial zone instead of pushing it aside.
In his examination of Pertusariaceae Darbishire found that the apothecia also originated from a similar deeply seated blue-staining tissue, and he concluded that the soralia represented abortive apothecia and really corresponded to Acharius’s “apothecia of the second order.” His conclusion as to the homology of these two organs is disputed by Bitter[497], who considers that the common point of origin is explained by the equal demand of the hyphae in both cases for special nutrition, and by the need of mechanical support at the base to enable the hyphae to reach the surface and to thrust back the cortex without deviating from their upward course through the tissues.
C. Dispersal and Germination of Soredia
Soredia become free by the breaking down of the hyphal stalks at the septa or otherwise. They are widely dispersed by wind or water and soon make their appearance on any suitable exposed soil. Krabbe[498] has stated that, in many cases, the loosely attached soredia coating some of the Cladonia podetia are of external origin, carried thither by the air-currents. Insects too aid in the work of dissemination: Darbishire[499] has told us how he watched small mites and other insects moving about over the soralia of Pertusaria amara and becoming completely powdered by the white granules.
Darbishire[499] also gives an account of his experiments in the culture of soredia. He sowed them on poplar wood about the beginning of February in suitable conditions of moisture, etc. Long hyphal threads were at once produced from the filaments surrounding the gonidia, and gonidia that had become free were seen to divide repeatedly. Towards the end of August of the same year a few soredia had increased in size to about 450µ in diameter, and were transferred to elm bark. By September they had further increased to a diameter of 520µ, and the gonidia showed a tendency towards aggregation. No further differentiation or growth was noted.